
A Bayesian Approach for Inference on Probabilistic

Surveys

Marco Del Negro∗

Federal Reserve Bank

of New York

Roberto Casarin

Ca’ Foscari University of Venice

Federico Bassetti

Polytechnic University of Milan

April 18, 2022

Abstract

We propose a non-parametric Bayesian approach for conducting inference on prob-

abilistic surveys. We use this approach to study whether US Survey of Professional

Forecasters density projections for output growth and inflation are consistent with the

noisy rational expectations hypothesis. We find that in contrast to theory for horizons

close to two years there is no relationship whatsoever between subjective uncertainty

and forecast accuracy for output growth density projections, both across forecasters

and over time, and only a mild relationship for inflation projections. As the horizons

shortens, the relationship becomes one-to-one, as the theory would predict.
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I Introduction

The pioneering work of Manski (2004) made economists appreciate the advantages of prob-

abilistic surveys relative to surveys that only ask respondents for their point projections:

probabilistic surveys simply provide a wealth of information that is not included in point

projections.1 As Potter (2016) writes, “in a world characterized by pervasive uncertainty,

density forecasts provide a comprehensive representation of respondents’ views about possi-

ble future outcomes for the variables of interest.” Given the respondents’ density forecasts,

the econometrician can compute numerous objects of interest, such as the mean, the median,

the variance, the skewness, the interquantile range, et cetera.

Except that survey respondents do not provide us with density forecasts. For most

surveys concerning continuous variables, they only provide the percent chance that the vari-

able of interest (e.g., inflation over the next year) would fall within different pre-specified

contiguous ranges or bins. That is, the information we have consists in the integral of the

forecast density over these bins, or equivalently, in a few points of the cumulative density

function (CDF). In order to extract most quantities of interest, standard practice consists

in postulating a parametric form for the forecast distribution and computing its parameters

by minimizing the distance between the observed CDF points and those implied by the as-

sumed distribution, which is often either a step-wise uniform (Zarnowitz and Lambros, 1987),

a Gaussian (Giordani and Soderlind, 2003), or a generalized Beta distribution (Engelberg et

al., 2009).2

In this paper we propose a Bayesian non-parametric approach for the estimation of

the survey respondents’ forecast densities.3 The approach starts by making parametric as-

sumptions on the mapping between the predictive distribution of forecasters and the bin

probabilities they report, where this mapping explicitly allows for the introduction of noise

1Indeed, a number of recent surveys, including the Federal Reserve Bank of New York Survey of Consumer

Expectations, rely heavily on probabilistic questions.
2For a few quantities of interest, such as the median, one can compute non-parametric bounds as in

Engelberg et al. (2009), which depends on how one deals with reporting “noise” (e.g., rounding).
3In economics, the Bayesian non-parametric approach so far has applied to the analysis of treatment

effects (Chib and Hamilton, 2002), autoregressive panel data (Hirano, 2002; Gu and Koenker, 2017; Liu,

2021), stochastic production frontiers models (Griffin and Steel, 2004), unemployment duration (Burda et

al., 2015), and finance (Griffin, 2011, and Jensen and Maheu, 2010). Griffin et al. (2011) provide an intuitive

description of the approach and a survey of this literature up to 2011. Outside of economics, these methods

are widely used in biostatistics (Mitra and Müller, 2015), machine learning (Blei et al., 2010, Hannah et al.,

2011), and psychology (Griffiths and Tenenbaum, 2006).
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in the reporting (e.g., rounding toward zero). We then relax this parametric model by

embedding it into the more general Bayesian non-parametric approach, thereby amending

the potential misspecification associated with the parametric assumptions. This is because,

loosely speaking, Bayesian non parametric replaces any model with a potentially infinite mix-

ture of such models, attaining more flexibility while at the same time using the information

from the cross-section of forecasters to estimate the parameters of the mixture components.

Intuitively, each mixture component corresponds to a forecaster “type” (e.g., low/high vari-

ance; optimists/pessimists; low/high noise; et cetera, and combinations thereof). As long

as the number of types grows more slowly than the number of forecasters, there is enough

information to estimate the parameters corresponding to each type.

Our approach differs from existing methods in a few important dimensions. First, it

allows for full-fledged inference regarding the mapping between data and objects of interest,

in the sense that it generates a posterior probability for these objects. While current ap-

proaches provide point estimates for, say, measures of the scale of the predictive densities like

the variance, they do not provide any assessment of the uncertainty surrounding these esti-

mates, which is often large given the limited information provided by the survey responses.

Second, inference conducted using a specific parametric distribution can be naturally sensi-

tive to the choice of the distribution, or the choice of the mapping between the distribution

and the reported bin probabilities (the noise). The non-parametric nature of our approach

provides some robustness to misspecification regarding these parametric assumptions. Last,

our approach conducts inference jointly across survey respondents, that is, using the entire

cross-section instead of being applied to each respondent separately. As hinted above, this

joint inference allows for partial information pooling across forecasters thereby improving

the precision of the inference, making it possible to obtain some consistency results when

the number of forecasters grows to infinity.

We use this approach to address the question of whether US Survey of Professional Fore-

casters (SPF) density forecasts are consistent with the noisy rational expectations hypothesis

(see, for instance, Coibion and Gorodnichenko, 2012, 2015). According to this hypothesis,

forecasters receive both public and private signals about the state of the economy. The pre-

cision of forecasters’ signals, both public and private, ought to be reflected in equal measure

in their density forecasts and, under rational expectations, in their ex-post forecast accuracy,

both in the cross-section and over time. For example, if the economy becomes more uncertain

and the precision deteriorates, this should be reflected in both higher subjective uncertainty

and worse ex-post forecast errors. In fact, we find that for horizons close to two years there
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is no relationship whatsoever between subjective uncertainty and ex-post forecast accuracy

for output growth density projections, and only a very mild relationship for inflation pro-

jections. As the horizons shortens, the relationship becomes one-to-one, in accordance with

the theory. These findings suggest that forecasters do not correctly anticipate periods of

macroeconomic uncertainty, except for very short horizons. Notably, this finding is robust

to the exclusion of the Covid period.

The outline of the paper is as follows. Section II presents the inference problem, briefly

describes current approaches, and formally discusses the Bayesian non-parametric approach.

Section III first provides a few examples of how our approach differs from current practice

and then discusses the relationship between subjective uncertainty and forecast accuracy.

Section IV concludes pointing out some of the limitations of the analysis and discussing

avenues for further research.

II Inference for Probabilistic Surveys

In this section we start by providing a short introduction to probabilistic survey data focusing

on those features that are relevant for this analysis, and in the process describe the SPF data

used in our application. Then we briefly discuss the approaches used so far for translating

the information provided by the respondents into forecast subjective distributions. The rest

of the section is devoted to the description of our Bayesian non-parametric approach to

inference.

II.A The inference problem and current approaches

Probabilistic forecasts such as those elicited by the Philadelphia Fed as part of the SPF take

the form of probabilities assigned to bins: the percent chance that the variable of interest,

such as inflation or GDP growth, falls within different contiguous ranges, where these ranges

are pre-specified by the survey designer (some recent surveys, such as the Atlanta Fed’s

Survey of Business Uncertainty, only specify the number of bins and let the respondents

determine their boundaries). For each forecaster i = 1, ..., n the available data consists of

a vector of probabilities zi = (zi,1, . . . , zi,J), with zi,j ≥ 0 and
J∑
j=1

zi,j = 1, measuring the

predictive likelihood that continuous variable y (e.g. inflation or GDP growth) falls within

the respective bin. The bins are mutually exclusive and contiguous, and generally cover the
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Figure 1: Probability Forecasts for Selected Examples

Forecasts for output growth in 2020 made in 2019Q2

(532) (584)

Forecasts for inflation in 2009 made in 2008Q4

(516) (560)

Note: Each panel displays the forecast probabilities zi,j , j = 1, . . . , J (step-wise solid lines) for a given forecaster i (forecaster
number shown in parentheses) and the bin bounds (black ticks, horizontal axis).

entire real line. In what follows, we denote by (yj−1, yj], j = 1, . . . , J the bins and assume

that y0 < y1 < . . . < yJ , where y0 and yJ are equal to −∞ (left open bin) and +∞ (right

open bin), respectively. Figure D-1 in the Appendix displays the evolution of the bin ranges

from the beginning of our sample, in 1982, until the end in 2021, for both output growth

and inflation, and shows that bins were changed in 1992, 2009, and 2020 for output growth

surveys, and in 1985, 1992, and 2014 for inflation surveys. The fact that the bin boundaries

change over time needs to be borne in mind when comparing surveys for different years.

The SPF is conducted at a quarterly frequency (answers are collected in the middle of

each quarter, right after GDP figures for the previous quarter have been released) and asks

about probabilistic predictions for current and the following year year-over-year growth rates
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in real output (GDP) and the price level, as measured by the GDP deflator. Stark (2013)

discusses at length some of the features of the SPF survey, and the Philadelphia Fed’s site

provides a manual for interpreting the data that includes the history up to the present of

bin boundaries for the various variables being forecast.4

Figure 1 provides a few examples of survey responses that illustrate a number of common

features of the SPF data. The top two panels show the probabilistic forecasts for output

growth in 2020 made in 2019Q2 made by respondents 532 and 584, while the bottom two

panels show the forecasts for inflation in 2009 made in 2008Q4 by respondents 516 and 560.

The probabilities zi’s are displayed as histograms, while the black ticks on the horizontal

axis mark the boundaries of the bins.

The first feature that emerges from Figure 1 is that probabilistic forecasts are very het-

erogeneous. For each row the respondents are forecasting the same object, and yet their

probabilistic predictions are very different. Another feature is the fact that forecasters often

assign zero probability to some if not most bins. Forecaster 532 for instance places zero

probability on output growth being between -1 and 1 percent, but positive probability on

output being between -2 and -1 percent, and between 1 and 3 percent. Should the econo-

metrician interpret this information literally, or as an indication that this respondent has a

bimodal forecast distribution with some probability on a recession, and a larger probability

on an expansion, with very small but not literally zero likelihood of in-between outcomes?

Other forecasters, such as respondent 584, place positive mass on almost all bins, however.

A third feature of the data is that almost all probabilities in Figure 1 are round numbers,

with responses for forecaster 584 being again the only exception. Fourth, forecasters do

place mass on open bins and sometimes, as is the case for respondent who in 2008 was

fearing deflation in 2009, most of the mass. Figures D-4 and D-5 in the Appendix show

for each output growth and inflation survey the percentage of respondents placing positive

probability on either one open bin or both. These percentages are as high as 70 for output

and 90 percent for inflation before 1992, when the bins were changed, but are on average

about 20 percent, with peaks of 40 percent or higher, even after 1992. Finally, many of these

4Figure D-2 in the Appendix displays the number of respondents n for output growth surveys conducted

in Q1, Q2, Q3, and Q4 of each year (the numbers for inflation are essentially the same). The number of

respondents is about 35 in the early 1980s, and then drops steadily over time until 1992 when the Philadelphia

Fed begins to manage the survey; n hovers around 35 until the mid-2000s and then starts to increase reaching

a peak of about 50 during the Great Recession; it declines steadily thereafter and is about 30 in 2021. Figure

D-3 shows survey participation by respondent, and provides a visual description of the panel’s composition.
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predictive densities appear asymmetric. These examples display a left skew for output and,

at least for forecaster 560, a right skew for inflation.

The econometrician’s problem is to use the information given by the elements of the

survey probability vector zi of the i-th forecaster to address a number of questions of interest:

What is the mean prediction for forecaster i? How uncertain are they? Is there skew in their

predictive densities? The general approach for macroeconomic surveys has been to postulate

that forecasters i = 1, . . . , n have in mind a given predictive probability distribution Fi(y)

over the variable being forecast, which they use to assign the bin probabilities zi. The

task of the econometrician is then to infer the underlying Fi(y) based on the data zi, and

then use the estimated Fi(y) to answer the questions of interest. To our knowledge, most

existing literature has accomplished this task by fitting a given parametric distribution to

the Cumulative Distribution Function (CDF) implied by the bin probabilities, respondent by

respondent, that is fitting Zij = zi,1 + · · ·+ zi,j j = 1, . . . , J , i = 1, . . . , n using a parametric

family of distributions {F (y|θ) : θ ∈ Θ}. The type of the parametric distribution varies

across studies, from a mixture of uniforms/piece-wise linear CDF (that is, assuming that

the probability is uniformly distributed within each bin; Zarnowitz and Lambros, 1987), to a

Gaussian (Giordani and Soderlind, 2003), a skew-normal (Garcia and Manzanares, 2007), a

generalized beta (Engelberg et al., 2009)5 and a skew-t distribution (e.g., Ganics et al., 2020).

The Gaussian and the generalized beta assumptions have been the most popular approaches

in academic research, although in applied work at central banks the mixture of uniforms

approach is often followed. The parameters of each distribution are usually estimated using

nonlinear least squares, respondent by respondent; that is, Fi(y) = F (y|θ̂i), where

θ̂i = argmin
θi

J∑
j=1

∣∣∣Zij − F (yj|θi)
∣∣∣2. (1)

These approaches have been popular but have some limitations. A first limitation is that

the assumed parametric distribution may be misspecified, in the sense that it may not fit the

individual responses well. Relatedly, the width of the bins can be large, as is obviously the

case when the respondent places probability on open bins (interior real output growth bins

after 2020 are also very wide). This implies that even if the distributions fit the Zij’s, the

inference results on moments and quantiles can be sensitive to the distributional assumption.

A second issue is that bounded distributions such as the beta or the mixture of uniforms

5Whenever the number of (adjacent) bins with positive probability is two or fewer, Engelberg et al. (2009)

uses a triangular distribution.
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take literally the zij that are zero, in that they place no probability mass on bins where the

respondents place no mass. More in general, for all assumed F (·)’s the approach outlined

in expression (1) ignores the issue of rounding, in that it takes all the Zij’s literally even

though the respondent may be reporting approximate probabilities (Dominitz and Manski,

1996; D’Amico and Orphanides, 2008; Boero et al., 2008a, 2014; Engelberg et al., 2009;

Manski and Molinari, 2010; Manski, 2011; Giustinelli et al., 2020, among others, discuss

the issue of rounding; Binder, 2017 uses rounding to measure uncertainty).6 Finally, almost

all existing approaches ignore inference uncertainty, even that concerning θi for a given

parametric assumption, let alone the uncertainty about the shape of Fi(·). This omission

implies that confidence bands and hypothesis testing procedures cannot be derived.7 These

limitations are well known in the literature (see Clements et al., forthcoming). There have

been attempts to address some of these issues, in particular the potential misspecification, by

choosing more flexible families of distributions such as the skew-normal or the skew-Student-

t distribution (e.g., Garcia and Manzanares, 2007; Ganics et al., 2020). But the possibility

of misspecification remains. Most importantly, if the econometrician does not account for

inference uncertainty, this flexibility comes at the price of overparamterization.

In the following two sections, we propose a Bayesian model that attempts to overcome

some of these limitations. We first introduce a parametric model for the forecaster distri-

bution. This model follows the literature in that it assumes that each forecasters has in

mind a specific predictive distribution F (·) which he uses to assign probabilities ν to the

bins. It is different from the literature in that it explicitly postulates that the data z are

noisy versions of the ν’s, where the noise is assumed to follow a parametric distribution. We

then depart from this parametric framework by embedding it into a more general Bayesian

non-parametric model, which assumes the parameters of the forecasters in the cross-section

are drawn form an infinite mixture prior. The combination of different parameter draws

6Manski and Molinari (2010) and Giustinelli et al. (2020) propose to treat the issue of rounding by

considering interval data and using a person’s response pattern across different questions to infer her or his

rounding practice. It is important to note that the inferential approach based on interval data followed by

these researchers is very different from the one described at the beginning of this section.
7Researchers recognize the emergence of an inference issue especially when the information provided by the

respondent is very limited, but the proposed solution mostly amounts to either choosing less parameterized

distributions or discarding the respondent. For instance, some researchers simply discard histograms with

fewer than three bins Clements (2010), others (Engelberg et al., 2009; Clements, 2014b,a; Clements and

Galvão, 2017) use a triangle distribution in these cases, as mentioned above. Liu and Sheng (2019), however,

make an attempt to account for parameter uncertainty for given parametric assumptions. They propose

maximum likelihood estimation of parametric distributions on artificial data generated from the histogram.
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accomodates different shapes of the predictive distribution and is flexible enough to approx-

imate a wide range of densities. The model flexibility potentially amends misspecification

associated with the parametric assumptions; it accounts for forecaster heterogeneity; and it

allows for some degree of information sharing in the cross-section when making inference.

II.B A parametric probabilistic model

We assume that the probability vector zi reported by a forecaster is a noise-ridden measure-

ments of an unobserved vector of subjective probabilities over the J bins νi = (νi1, . . . , νiJ),

with νij ≥ 0 and νi1 + . . .+ νiJ = 1 (Boero et al., 2008b, discuss the issue of noise). If each

forecaster has a subjective probability distribution Fi(·) over the variable being forecast

(y ∈ Y ⊂ R), which they use to compute the bin probabilities νij, then

νij = νij(θi) = F (yj|θi)− F (yj−1|θi), j = 1, . . . , J (2)

where θi ∈ Θ includes the parameters describing the CDF Fi(·) = F (·|θi). For concreteness,
in our application the subjective distribution F (·|θ) is a mixture of two Gaussian distribu-

tions, that is

F (y|θ) = (1− ω)Φ(y|µ, σ2
1) + ωΦ(y|µ+ µδ, σ

2
2),

but the general approach accommodates many other choices for F (·|θ).

The uncertainty in zi is encoded into a probability distribution h(·), that is

zi = (zi,1, . . . , zi,J)
ind∼ h(zi|θi), (3)

which captures the noise due to approximations or to actual mistakes in reporting. In

choosing the random histogram distribution h(·), one needs to account for the fact that

zi belongs to the simplex; that is, the elements of zi are positive and sum up to one. A

convenient choice for the distribution h(·) is the standard Dirichlet distribution which is

defined on the simplex. A drawback of this distribution is that its PDF is null for zi’s that

have some elements equal to zero, when in fact forecasters often assign zero probability to

one or more bins. To specify h, we follow Zadora et al. (2010) and Scealy and Welsh (2011)

and use a distribution which allows for values of the random vector on the boundary of

the simplex. This distribution can be described in term of the augmented representation

(z; ξ) = (z1, . . . , zJ ; ξ1, . . . , ξJ)
′ where the indicator variables ξj is 0 if and only if zj = 0

and ξj = 1 otherwise. We impose that ξ1 + . . . + ξJ < J to rule out the event all reported
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probabilities are zero. The joint distribution of z = (z1, . . . , zJ) and ξ = (ξ1, . . . , ξJ)
′ is a

zero-augmented Dirichlet distribution with probability density function

h(z, ξ|θ) = 1

c(θ)

J∏
j=1

αj(θ)
ξj(1− αj(θ))

1−ξjh(z|θ, ξ), (4)

where θ is a parameter, α(θ) = (α1(θ), . . . , αJ(θ)) are the probabilities that a forecaster

will report a zero probability on the J bins, c(θ) = 1 − (α1 · . . . · αJ(θ)) is a normalizing

constant, and h(z|θ, ξ) is the standard Dirichlet distribution defined on the elements of z

that are non zero:

h(z|θ, ξ) =
Γ
(∑

j∈J ∗ ϕ(θ)νj(θ))
)

∏
j∈J ∗ Γ(ϕ(θ)νj(θ))

∏
j∈J ∗

z
ϕ(θ)νj(θ)−1
j , (5)

where J ∗ = J ∗(ξ) = {j = 1, . . . , J ; ξj = 0} is the set indexes of the non-zeros elements

of z, ϕ(θ)κ is the rescaled precision, with κ =
∑
j∈J ∗

νj(θ), and νj(θ)/κ for j ∈ J ∗ are the

renormalized ν(θ)’s, which take into account the fact that if a forecaster decides to report

zero probability for one or more bins, they need to adjust the probabilities associated with

the other bins so that they still sum up to one.8 The distribution used in (3) is the marginal

distribution of z implied by expression (5),

h(z|θ) =
∑
ξ∈X

h(z, ξ|θ)

where X is the set of all vectors with 0-1 binary entries of length J which are not all zeros,

i.e. X = {ξ = (ξ1, . . . , ξJ)
′ ∈ {0, 1}J , s.t. ξ1 + . . .+ ξJ < J}.

The probability α of reporting zero mass is modeled as αj(θ) = α(νj(θ), ϵ(θ)) where the

function α(ν, ϵ) is decreasing in ν such that α → 1 for ν → 0 and α → 0 for ν → 1. ϵ(θ)

measures the sensitivity of αj(θ) to ν (that is, α → 1 for ϵ → 0 and α → 0 for ϵ → 0). In

8Note that the conditional Dirichlet satisfies some relevant properties of the unconditional Dirichlet, that

are the elements of z and their marginal conditional means

E(zj |ξ) =
ϕνj∑

j∈J ∗ ϕνj
=

νj∑
j∈J ∗ νj

, j ∈ J ∗ (6)

sum up to one, and their marginal conditional variances

V(zj |ξ) =
νj(κ− νj)

κ2(ϕ
∑

j∈J ∗ νj + 1)
, j ∈ J ∗ (7)

go to zero with ϕ→ ∞.
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practice, the probabilities α are parameterized as:

αj(θ) =

∫ ϵ(θ)

0

Be(x|νj(θ), r)dx (8)

j = 1, . . . , J , where Be(x|m, r) denotes the pdf of a beta distribution Be(m, r) with mean m

and precision r parameters. We assume r is fixed at 100 and ϵ(θ) = ϵ. The parameter vector

of h(z, ξ|θ) in the new parametrization is θ = (µ, µδ, σ1, σ2, ω, ϕ, ϵ), where we set ϕ(θ) = ϕ.

Some of the parametric assumptions outlined above are less palatable than others. For

instance, the assumption that “noise” around the non-zero zi,j’s takes the form of a Dirichlet

distribution is at odds with the observation on the prevalence of rounding. And even when

the parametric assumption may be more palatable (e.g, the F (·|θ), or the α(·|θ)), it can still

be wrong. Embedding these parametric assumptions into a mode general non parametric

model arguably protects us, at least to some extent, from misspecification. We describe this

approach in the next section.

II.C A Bayesian non-parametric model

The Bayesian non-parametric hierarchical model works as follows. We assume that the

distribution generating the zi has a respondent-specific parameter θi and the parameters θi,

i = 1, . . . , N are sampled from a mixture of forecaster “types” (for concreteness, let us think

of low versus high uncertainty; low versus high mean; left versus right-skewed; low versus

high reporting noise; a combination of all the above, et cetera). For now imagine that the

number of types K is finite. At the first stage of the hierarchy of distributions the parameter

θi of i-th forecaster is distributed according to

θi
iid∼


θ∗
1 with probabilityw1

...

θ∗
K with probabilitywK

(9)

with wk > 0 and w1 + . . . + wK = 1. At the second stage of the hierarchy, it is assumed

that the unknown parameter types are sampled from a common distribution θ∗
k

iid∼ G0(θ),

k = 1, . . . , K, and that the type probabilities have prior distribution

(w1, . . . , wK) ∼ Dir
(ψ0

K
, . . . ,

ψ0

K

)
, (10)

where ψ0 is a concentration parameter and Dir(a1, . . . , aK) a Dirichlet distribution of pa-

rameters (a1, . . . , aK).



12

Now let the number of types K go to infinity. When this happens, we obtain the discrete

random measure

G(θ) =
∞∑
k=1

wkδ(θ − θ∗
k) (11)

where δ(x) denotes a point mass distribution located at 0, the so-called “atoms” θ∗
k are i.i.d.

random variables from the base measure G0, and the random weights wk are generated by

the stick-breaking representation SB(ψ0) given by

wk = vk

k−1∏
l=1

(1− vl) (12)

where the stick-breaking components vl are i.i.d. random variables from a Beta distribution

Be(1, ψ0) (e.g., see Pitman, 2006). Following Sethuraman (1994), the random measure G is

a Dirichlet process DP(ψ0, G0) (Ferguson, 1973) and our hierarchical model is a Dirichlet

process prior:

θi
iid∼ G, G ∼ DP(ψ0, G0).

The base measure G0 has the interpretation of mean type distribution, and the precision

parameter ψ0 measures the concentration of G around G0, so that when ψ0 → +∞ all

forecasters are assumed to be of the same type and when ψ0 → 0 the inference is done

forecaster by forecaster (using the same prior). See Ghosh and Ramamoorthi (2003) for an

introduction to Dirichlet process priors and Hjort et al. (2010) for a review on the state-of-

the-art practice of Bayesian non-parametrics.

Sethuraman (1994)’s constructive representation, in addition to being computationally

convenient as discussed in the next section, implies that our model has the infinite mixture

representation

hG(z) =

∫
h(z|θ)G(dθ) =

∞∑
k=1

wkh(z|θk) (13)

where the weights wk come from the same prior distribution (12) for all forecasters. This

representation indicates that the Bayesian non-parametric model is flexible and, as such, can

overcome the inherent misspecification implied by the use of a specific parametric assump-

tions.

In conclusion, in our Bayesian non-parametric model each forecaster is described by

a prior distribution over a very rich parameter space. At the same time, Bayesian non-

parametrics allows for some degree of pooling: the approach allocates forecasters whose

predictive distributions are similar to one another into groups and allows the number of

groups to grow naturally as more data becomes available. This pooling mitigates overfitting.
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II.D Posterior inference

The Dirichlet process G generates a priori dependence among the forecaster-specific param-

eters θi’s via the formation of clusters of forecasters of the same type. The relationship

between θi and the mixture components θ∗
k, is encoded by the auxiliary indicator variables

di’s, which are equal to k if θi is from the kth mixture component, that is θi = θ∗
di
.9 The

allocation variables di (i = 1, . . . , n) are then used to construct the posterior estimate of the

forecaster-specific subjective probability:

Fi(y) = E
[
F (y|θ∗

di
)|z1:n, ξ1:n

]
= E

[
∞∑
k=1

F (y|θ∗
k)I{di = k}

∣∣∣z1:n, ξ1:n
]
. (14)

Monte Carlo sampling can be used to approximate the posterior distribution and the

quantities of interest such as subjective probabilities, point estimates and posterior credible

intervals. Building on Walker (2007) and Kalli et al. (2011), we use a slice sampling algo-

rithm which generates random draws from the posterior distribution of θi for i = 1, . . . , n

(Appendix B provides the details of the Gibbs sampler). The output of the Gibbs sampler

can be used to approximate Eq. 14 as follows

F̂i(y) =
1

M

M∑
m=1

∞∑
k=1

F (y|θ∗(m)
k )I{d(m)

i = k} (15)

where d
(m)
i , θ

∗(m)
k , m = 1, . . . ,M are the MCMC samples for the infinite mixture atoms and

allocation variables.

II.E Posterior consistency

In this section, we also discuss asymptotic properties of the posterior distribution as the

number of forecasters goes to infinity.

9As shown in Escobar and West (1995), the predictive distribution of θn+1 conditional on (θ1, . . . ,θn)

can be represented as a Polya’s urn process

θn+1|θ1, . . . ,θn ∼ ψ0

ψ0 + n
G0(θn+1) +

1

ψ0 + n

n∑
i=1

δ(θi − θn+1).

With probability
ψ0

ψ0 + n
the new draw θn+1 is generated from G0, but it is otherwise equal to one of the

previous n draws. In fact, the n forecasters’ distribution can be characterized using N different clusters,

where N is a random variable with prior mean E[N ] ≈ ψ0log(
ψ0 + n

ψ0
). When ψ0 → ∞ we have the same

parametric model for each forecaster: zi ∼ h(·|θi) where the θi’s are drawn independently from G0.
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We formalize convergence with respect the number of observations via weak consistency

of the posterior distribution (see, e.g. Ghosh and Ramamoorthi, 2003), which provides a

widely accepted minimal requirement for large sample behavior of Bayesian non-parametric

models (see, e.g. Norets and Pelenis, 2012; Pelenis, 2014; Norets and Pelenis, 2014; Bassetti

et al., 2018).

Roughly speaking, posterior consistency means that in a frequentist experiment with a

given data generating density, the posterior distribution concentrates around this density as

the sample size (number of forecasters) increases. More formally, letH is the set of all possible

data generating densities (with respect to a dominating measure) on the sample space Z ⊂
RJ . Given a prior Π on H, the posterior is said to be weakly consistent at h0 if for every i.i.d.

sequence z1, z2, . . . of random variables with common density h0 the posterior probability

Π(U |z1, . . . , zn) converges a.s. to 1 as n → +∞ for every weak neighbourhood U of h0.

For some background material on posterior consistency, see e.g. Ghosh and Ramamoorthi

(2003).

In our setting, the prior Π on H is a type I mixture prior (see Wu and Ghosal (2009a))

induced by the map G 7→ hG(z) =

∫
Θ

h(z|θ)G(dθ) where Θ is the mixing parameter space,

and G has a Dirichlet process prior DP(ψ0, G0), where G0 is a base measure on Θ and ψ0

the concentration parameter.

To prove weak consistency for our model, we use Schwartz theorem (see e.g. Chapter

4 in Ghosh and Ramamoorthi (2003)). This result states that weak consistency at a “true

density” h0 holds if the prior assigns positive probabilities to Kullback-Leibler neighborhoods

of h0. We state here only one main result on consistency, all the details, proofs and some

additional results are available in Section D of the Appendix.

If the probability of zero bins is positive, H includes also distribution h with assigns posi-

tive mass to sub-symplex of lower dimension of the J-dimensional simplex ∆J = {(z1, . . . , zJ−1) :

z1 + · · · + zJ−1 ≤ 1, 0 < zj < 1}. In this case Z can be seen as the augmented space of

the possible values of (z, ξ) and we need to properly generalize the definition of Kullback-

Leibler divergence to mixed densities. Let zξ = [zj : j ∈ J ∗(ξ)] and observe that, given ξ,

zξ takes values in the open J − |ξ|-dimensional simplex ∆J−|ξ| where |ξ| = ξ1 + · · · + ξJ .

On the sample space Z, given by all the pairs (ξ, z), one can thus define a σ-finte measure

λ(dξdz) = c(dξ) ⊗ Lξ(dzξ) where c is the counting measure on X and, given ξ, Lξ is the

Lebesgue measure on ∆J−|ξ|.
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The set of all possible data generating densities H is the set of all the densities with

respect to λ. These densities g factorize as g(ξ, z) = g(ξ)g(zξ|ξ), where zξ = [zj : j ∈ J ∗(ξ)].

Given two densities h0 and g in H the Kullback-Leibler divergence between h0 and g is

then defined as

KL(h0, g) =

∫
Z
h0(ξ, z) log

(h0(ξ, z)
g(ξ, z)

)
λ(dξdz). (16)

Some more details on KL(h0, g) are given in Section D of the Appendix.

We define M∗ as the set of finite mixtures of densities (4), and denote by H∗
0 the set of

densities that can be approximated in the Kullback-Leibler sense by densities in M∗, i.e.

H∗
0 = {h0 density w.r.t. λ: ∀ ϵ > 0 ∃ g ∈ M∗ s.t. KL(h0, g) ≤ ε }.

Theorem 1. Assume that θ 7→ (α1(θ), . . . , αJ(θ), ϕ(θ)ν1(θ), . . . , ϕ(θ)νJ(θ)) is a continuous

function such that νj(θ) > 0 and 0 < αj(θ) < 1 for every j = 1, . . . , J . If G0 has full support,

then the posterior is weakly consistent at any density h0 in H∗
0 such that

∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

∣∣∣∣∣∣log
 ∏
j∈J ∗(ξ)

zj

∣∣∣∣∣∣h0(zξ|ξ)dzξ < +∞. (17)

In the result given above, the number of bins is finite. Additional asymptotic results are

obtained when the number of bins J goes to infinity, the bin size goes to zero and the rounding

disappears. First, for n fixed, we proved that the random histogram model zi converges to

an infinite dimensional model where each forecaster’s response is modelled by a (random)

CDF with mean F (·|θi). This infinite dimensional prior model gives positive probability

to any (weak) neighbourhood of any distribution defined on the support set of F (·|θi).
See Theorem 2 and Corollary 1 in Appendix C. Moreover, under suitable assumptions, as

the number of forecasters and the number of bins go to infinity the posterior consensus

distribution converges to the true consensus CDF of the forecasters, see Proposition 5 in

Appendix C.

In the applications, the choice of the probabilistic model, in particular of the distribution

family F (·|θi), and of the prior distribution can have an impact on the results given that

n is far from infinity (around 30 for the SPF) and the number of bins J is small (e.g.,

J = 10 in the US SPF on GDP in 2020). When the number of bins decreases and/or

the bin width increases, the amount of information available to reconstruct the subjective

CDF diminishes, and model assumptions can have a more significant impact on the empirical

results. An advantage of the Bayesian approach is that it accounts for the lack of information
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returning wider credible intervals. In general, the approach provides a measure of the level

of estimation uncertainty for all objects of interest. Nevertheless, a robustness check with

respect to the specification of the prior distribution and the distribution family should be

considered in all applications of this method.

II.F Prior parameters specification

In the following we discuss the prior setting used in the real data application. The parametric

family chosen for the subjective CDF is F (y|θ) = (1−ω)Φ(y|µ, σ2
1)+ωΦ(y|µ+µδ, σ2

2) where

θ = (µ, µδ, σ1, σ2, ω, ϕ, ϵ). The parameters ϵ and ϕ are used to specify h and α in (5) and

(8), respectively.

The base measure G0 of the DPP is given by the product of the following distributions.

The location of the first mixture component is µ ∼ N (2, 52). Note that the standard

deviation is 5, so this is a very loose prior. The scales of the mixture components follow

σj ∼ IGa(aσ, bσ)I(σ1)(0,10), j = 1, 2 where aσ, bσ are chosen s.t. the standard deviation

has mean E[σ1] = 2 and a variance V [σ1] = 4. We truncate the distribution at 10 for

numerical reasons. The parameters µδ captures the deviation of the mean of the second

mixture component relative to the first one. Its prior is centered at zero (implying that

the second mixture a priori mainly captures fat tails) and has a standard deviation of 1:

µδ ∼ N (0, 12). Finally, the prior for ω, the weight on the second component of the mixture,

is ω ∼ B(0.5, 3). Its mode is zero, implying that the prior favors models with one mixture

only. The prior places roughly 20 percent probability on {ω ≥ 0.25}.

As regards the prior for the rounding-off parameter ϵ we assume a Ga(aϵ, bϵ) and set aϵ,

bϵ such that αj is close to one for νj less than 1%, very small for any νj larger than 5%, and

virtually zero when νj is larger than 10%.10

For the precision parameter of the random histogram, ϕ, we assume a Ga(aϕ, bϕ) where
aϕ and bϕ are s.t. E[ϕ] = 100, V [ϕ] = 100. The left panel of Figure 2 shows the 50 and 90

percent bands for the noise associated with three different values of ν: 0.1, 0.6 and 0.3. The

right panel of Figure 2 shows the mean and the 90% coverage intervals of αj(θ) as a function

of νj(θ). The probability of reporting zero becomes non negligible only for ν < 0.04%.

10We chose the beta distribution because it is the marginal of a Dirichlet, but we could have chosen

any other distribution satisfying the above requirements. Our parametrization of the beta distribution is

Be(x|ν, r) = 1

B(νr, (1− ν)r)
xνr−1(1− x)(1−ν)r−1 with x ∈ (0, 1), m ∈ (0, 1) and precision r > 0.
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Figure 2: Noise and zero probability

Noise around ν α(ν, ϵ) =

∫ ϵ

0

b(x|ν, r)dx as a function of ν

As regards the concentration hyperparameter ψ0 of the Bayesian non-parametric prior,

which determines the prior number of clusters, we follow the standard choice and set ψ0 = 1.

This implies that the expected number of clusters for a cross-section of 30 survey respondents

is roughly 4.

III Results

In this section we first discuss the application of the non-parametric Bayesian approach to

the few selected examples mentioned at the beginning of Section II, so that the reader be-

comes familiar with how the approach works in practice. Next, we document the evolution

from 1982 to 2021 of individual measures of uncertainty obtained using our approach. This

analysis sets the stage for the analysis in the next section, where we study the relation-

ship between subjective uncertainty and ex-post forecast errors, and assess whether SPF

predictive densities conform with the noisy rational expectations hypothesis.

III.A Examples

In this section we provide posterior estimates of the subjective predictive distributions F (y|θi)
obtained with our approach for the examples discussed in section II.A, and compare these
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Figure 3: Inference Using Bayesian Non-parametric Approach: CDFs and PDFs for

Selected Examples

Forecasts for output growth in 2020 made in 2019Q2

(532) (584)
CDF

PDF

Forecasts for inflation in 2009 made in 2008Q4

(516) (560)
CDF

PDF

Note: In each panel: the subjective CDFs (top panels) and selected quantiles (bottom panels). Top panels: subjective CDF
using least-squares approach with normal (gray, dashed line) or beta (black, dash-and-dotted line) assumption; subjective CDF
using BNP approach (posterior random draws in light gray); and observed cumulated histogram probabilities Zij j = 1, . . . , J
(crosses).
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estimates with the results obtained under some of the approaches currently used in the

literature.

Figure 3 shows the inference results for the four SPF respondents shown in Figure 1.

For each forecaster we show posterior draws (thin gray lines) from the BNP model for

the subjective CDF (top) and PDF (bottom), and compare it with the results under the

generalized beta (black, dash-and-dotted) and Gaussian (black, dotted) approaches. The

CDF plots also show the observed cumulative probabilities Zij (crosses), while the PDF

plots show the step-wise uniform PDF (gray dotted lines) obtained from step-wise uniform

PDF (gray dashed lines) implied by the histogram probabilities zij.

Figure 3 is helpful in illustrating a few points about the Bayesian non-parametric ap-

proach. First, the observed cumulative probabilities (the Zij’s; crosses) belongs to the high

posterior density region for all these respondents. This suggest that our approach is flexible

enough to capture a variety of arguably challenging cases. Bassetti et al. (forthcoming) pro-

vide several other examples obtained during the recent Covid episode which confirms this

impression. In contrast, the beta and the normal approaches do not fit the Zij’s well in

these examples, with the exception of respondent (584), and their CDFs and PDFs do not

belong to the high posterior density region obtained from the BNP approach. This implies

that there can be important differences in the objects of interests, such as the measure of

uncertainty, or quantiles, implied by the different approaches. Bassetti et al. (forthcoming)

again discuss some of these differences during the Covid period.

Figure 3 also shows that whenever there is less information from the respondent, the

BNP approach delivers wider posterior coverage intervals that reflect this higher degree of

uncertainty. The case of respondent 516 is exemplary. This respondent places 80 percent

probability on the left open bin (see Figure 1), implying that we know very little about the

left-tail behavior of this forecaster. The posterior coverage intervals for both the BNP CDF

and PDF reflect this uncertainty, as evidenced by the fact that the gray lines for both the

CDF and the PDF are far less concentrated for forecaster 576 in the left tail than in other

regions or for other forecasters.

III.B Heterogeneity in subjective uncertainty

Heterogeneity in macroeconomic probabilistic forecasts was noted a long time ago. While

much of the early literature focused on disagreement in point projections or central ten-
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Figure 4: Subjective uncertainty by individual respondent–Output Growth

H1Q2

H2Q2

Note:
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Figure 5: Subjective uncertainty by individual respondent–Inflation

H1Q2

H2Q2

Note:
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Figure 6: Cross-sectional standard deviation of individual uncertainty

H1Q2 H2Q2
Output Growth

Inflation

Note:
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dencies,11 more recent work documents the fact that forecasters disagree about uncertainty.

Lahiri and Liu (2006) and D’Amico and Orphanides (2008) are to our knowledge some of

the first papers to highlight heterogeneity in individual uncertainty, and do so in the context

of SPF predictions for inflation.12 A number of articles also provide evidence of persistent

differences in subjective uncertainty. Bruine De Bruin et al. (2011) for instance measure in-

dividual uncertainty for consumers’ density forecasts using the interquartile range obtained

by fitting a beta distribution to each forecaster and find that heterogeneity in perceived

uncertainty is significant and persistent, as it appears to be associated with demographic

characteristics and financial literacy. Boero et al. (2014) and Rich and Tracy (2021), using

the Bank of England Survey of External Forecasters and the European SPF, respectively,

also find that relative differences in uncertainty are long lasting, and interpret this fact as

suggesting that the degree of uncertainty is a forecaster-specific characteristic akin to the

individual optimism and pessimism established in the literature on point forecasts.13

In this section we document the evolution of individual measures of uncertainty obtained

using our approach in our 1982-2021 sample. We do for two reasons. First, we set the stage

for the analysis in the next section, where we study the relationship between subjective un-

certainty and ex-post forecast errors. In particular, we follow the aforementioned literature

and show that professional forecasters differ significantly in terms assessment of uncertainty,

11See Mankiw et al., 2003; Carroll, 2003; Capistrán and Timmermann, 2009; Patton and Timmermann,

2010, 2011; Andrade and Le Bihan, 2013; Andrade et al., 2016 and other work mentioned in the excellent

recent survey by Clements et al. (forthcoming). Following Zarnowitz and Lambros (1987), a large literature

has also investigated the question of whether disagreement and the average dispersion of density forecasts

(average uncertainty) move together (see Giordani and Soderlind, 2003; Lahiri et al., 1988; Rich and Tracy,

2010; Lahiri and Sheng, 2010; Abel et al., 2016, and Rich and Tracy, 2021, among many others; Kozeniauskas

et al., 2018 provide a clear discussion of the conceptual differences between macroeconomic uncertainty and

disagreement using a model where forecasters have private information and update their beliefs using Bayes’

law).
12Lahiri and Liu (2006) plot the evolution over time of the distribution of individual measures of uncer-

tainty (which they obtain by fitting a Gaussian CDF to for each forecaster’s histogram), and show that the

persistence in uncertainty is much less than what the aggregate time series data would suggest. D’Amico

and Orphanides (2008) fit a Gamma distribution to the cross-sectional CDF of individual variances, which

they also obtain under the Normal parametric assumption, and then use the variance of this Gamma to

measure disagreement about uncertainty and its evolution over time.
13Rich and Tracy (2021) propose the Wasserstein distance as a way of directly measuring heterogeneity in

predictive densities, and in computing this distance assume that individual PDFs are step-wise Uniform dis-

tributions in computing the distance. Relatedly, Clements (2014b) and Manzan (2021) discuss the updating

of density forecasts and in particular uncertainty in light of new information.
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and that these differences vary over time. We also show and that while these differences

are persistent, forecasters do change their mind from period to period about their subjec-

tive uncertainty—a variation that we will exploit later. Second, we take advantage of our

inference-based approach and test the extent to which these differences are significant.

Figures 4 and 5 show the evolution of subjective uncertainty by individual respondent for

output growth and inflation, respectively. The top and bottom panels display uncertainty

for the current and the next year projections, respectively, made in the second quarter

(the Appendix shows that results for other quarters are qualitatively similar). In each

panel the crosses indicate the posterior mean of the standard deviation of the individual

predictive distribution. We use the standard deviation (as opposed to the variance) because

its units are easily grasped quantitatively and are comparable with alternative measures

of uncertainty such as the interquartile range. Thin gray lines connect the crosses across

periods when the respondent is the same, providing information on both whether respondents

change their view on uncertainty and whether the composition of the panel affects the cross-

sectional average measure of uncertainty, which is shown by a black dashed line (Manski,

2018, stresses the extent to which the literature has often ignored compositional changes

when discussing the evolution of consensus or average measures). 6 provides a time series

of the differences in individual uncertainty, as measured by the cross-sectional standard

deviation of the individual standard deviations. The solid black line displays the posterior

mean of this measure, while the shaded areas represent the 90 percent posterior coverage.

Figure 4 shows that on average uncertainty for current year (top panel) output growth

projections declined from the 1980s to the early 1990s, likely reflecting a gradual learning

about the Great Moderation, and then remained fairly constant up to 2020 when the Covid

pandemic struck, and average uncertainty grew threefold. Average uncertainty for next year

(bottom panel) projections tends to be in general higher than for current year projections.

It follows a similar pattern, except that it displays a small but very steady upward shift in

the aftermath of the Great Recession. It appears unlikely that changes in survey design,

and particularly in the bins, affect these patterns: for output growth these changes take

place in 1992, 2009, and 2020. Except for 2020, where much of the change in uncertainty is

arguably attributed to Covid, there are no evident breaks associated with the bin changes.

Interestingly, we do not see any upticks in average subjective uncertainty in the run up to

recessions, even for current year forecasts, with the exception of the Covid crisis. Using the

interquantile range to measure uncertainty, as done in Figure D-9 in the Appendix, leads to

very similar results. Using the generalized beta approach to fit histograms (see Figure D-10)
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also produces similar overall patterns, although perhaps not surprisingly this approach leads

to lower estimates of subjective uncertainty relative to our approach.

Cross-sectional differences in individual uncertainty are very large, and quantitatively

trump any time variation in average uncertainty. The standard deviation of low uncertainty

individuals remains below 1 throughout the sample, with the sole exception of the Covid

period, while that of high uncertainty individuals is often higher than two. More formally,

the cross-sectional standard deviation of individual standard deviations, shown in Figure 6,

hovers between 0.4 and 0.8 throughout the sample, and then jumps during the Covid period.

The cross-sectional standard deviation is quite tightly estimated indicating that differences

across individuals are significant. The level and the dispersion of uncertainty appear to

be tightly linked, in that the cross-sectional standard deviation is high when the average

is high. Looking at Figure 4 this seems due to the fact that it is mostly high uncertainty

respondents who change their mind about the confidence in their projections, thereby driving

both the average and the cross-sectional standard deviations. Relatedly, while differences in

subjective uncertainty are persistent, forecasters do change their mind from period to period

about their subjective uncertainty, and their relative ranking varies as indicated by the fact

that the thing gray lines very often cross one another.

Figure 5 shows that on average subjective uncertainty for inflation in both for current

(top) and following (bottom) year declined from the 1980s to the mid-1990s and then was

roughly flat up until the mid-2000s. Average uncertainty rose in the years surrounding the

Great Recession, but then declined again quite steadily starting in 2021 and reached a lower

plateau since the mid 2010s. Interestingly, average uncertainty did not really rise much in

2020 and 2021 in spite of the Covid related disturbances, and in spite of the fact that for most

respondents expected inflation rose sharply, as documented in Bassetti et al. (forthcoming).

In the case of inflation changes in the bins, which took place in 1985, 1992, and 2014 (see

Figure D-1 in the Appendix), may have payed some role as we see that the average standard

deviation drops markedly in both 1992 and 2014. At the same time it is arguably not the

only explanation since such drops appear to be the continuation of a trend that had started

earlier when survey design had not yet changed.

As was the case for output growth, also for inflation cross-sectional differences in in-

dividual uncertainty are very large. The cross-sectional standard deviation of individual

standard deviations (Figure 6) follows the same pattern of the average standard deviation:

it starts around 0.6 percent in the 1980s, drops to around 0.4 percent in the 1990s, and then
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drops a bit further in the 2010s. This measure of cross-sectional heterogeneity in uncer-

tainty is somewhat tightly estimated, and these level shifts, especially that from the 1980s

to the mid-1990s, appear to be statistically significant. As was the case for output, high

uncertainty respondents becoming less uncertain are mostly driving both the average and

the cross-sectional standard deviations.

III.C Subjective uncertainty and forecast accuracy: Testing the

noisy information hypothesis using density forecasts

Is there a correspondence between forecast errors and subjective uncertainty? The answer to

this question is interesting in itself, as it sheds light on the relationship between the ex-ante

uncertainty expressed by survey respondents and their ex-post ability to predict macroe-

conomic outcomes. It is also of interest because it represents a test of the noisy rational

expectations hypothesis (see Coibion and Gorodnichenko, 2012, 2015, for instance). Accord-

ing to this model, forecasters receive both public and private signals about the state of the

economy. In the cross-section, the quality of forecasters’ private signals ought to be reflected

in equal measure in their density forecasts and in their ex-post forecast accuracy. Similarly,

in the time series changes in the precision of either public or private signals, due for instance

to variations in macroeconomic uncertainty, should be equally reflected in changes in both

subjective confidence and forecast errors.

A Scale Test

If survey respondent i is forecasting the variable of interest yt at time t−q, their subjective
uncertainty is defined by

σ2
t|t−q,i = Et−q,i[(yt − Et−q,i[yt])

2], (18)

where Et−q,i[.] denotes expectations taken using i’s predictive distribution. If we construct

the random variable

ηi,t,t−q = (yt − Et−q,i[yt])
2/σ2

t|t−q,i, (19)

under rational expectations (that is, if the data generating process for yt is consistent with

the predictive distribution) its unconditional expectation has to be equal to one, that is,

E[(yt − Et−q,i[yt])
2/σ2

t|t−q,i] = 1. (20)
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Figure 7: Subjective Uncertainty and Forecast Accuracy: A Scale Test
Output Growth Inflation

We can assess this hypothesis by testing whether αq = 1 in the panel regression

(yt − Et−q,i[yt])
2/σ2

t|t−q,i = αq + ϵt,i,q, t = 1, .., T, i = 1, .., N. (21)

where we use the posterior means of Et−q,i[yt] and σ
2
t|t−q,i from our approach. Estimates of

αq that are significantly greater/lower than 1 indicate that forecasters under/over estimate

uncertainty, and we hence refer to this as a “scale test,” meaning that it is an assessment of

whether density forecasts are appropriately scaled.

Figure 7 shows estimates of αq for different horizons, ranging from q = 8 (H2Q1) to

q = 1 (H1Q4) (recall that the variables being forecasted are the year-over-year growth rates

of output or the price level). The crosses indicate the OLS point estimates and the whiskers

the two-standard deviations posterior intervals, which are robust to heterogeneity (Müller,

2013). The figure shows that for horizons between two and one-and-half years (e.g., q = 6, 7

or 8) αq is significantly larger than 1 for both output growth and inflation. In fact, for

output growth αq is about 3, indicating that forecasters grossly underestimate uncertainty,

in line with the literature on overconfidence (Daniel and Hirshleifer, 2015; Malmendier and

Taylor, 2015). For horizons closer to one year (q = 5, 4) αq remains well above 1 for output,

but is not significantly different from 1 for inflation. For shorter horizons (q lower than 3)

αq is significantly lower than 1, indicating that forecasters overestimate uncertainty. The

overestimation is sizable for inflation, with estimates hovering around .5, but less so for
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output. For q = 1 the estimate of αq is barely significantly below 1. Figure D-12 in the

Appendix shows that these results do not change much across different sub-samples (eg,

excluding the Covid period and/or the period 1982-1991 when the Philadelphia Fed was not

in charge of the survey).

Figure 8: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy?
Output Growth Inflation

The idea behind the regression in (21) borrows heavily from existing literature. Clements

(2014a) in particular computes values for ηi,t,t−q using the point predictions in place of the

mean Et−q,i[yt], and estimates of σ2
t|t−q,i obtained from fitting a generalized Beta distribu-

tion. Clements then computes αiq using a time series regression for each forecaster i, tests

the hypothesis αiq > 1 and αiq < 1, and reports the fraction of forecasters for which each

hypothesis is rejected. Clements also plots time series averages of σt|t−q,i against each fore-

caster’s root mean square error (again, computed using the point forecasts). Both exercises

are conducted for US SPF surveys for output growth and inflation from 1981Q3 to 2010Q4.

Casey (2021) applies Clements (2014a)’s approach to Euro area, UK, and US SPF, using

a sample from 1999 to 2015. The gist of Clements (2014a)’s and Casey (2021)’s findings

are broadly in line with those reported above: at longer horizons forecasters generally tend

to be overconfident, and this overconfidence diminishes, or becomes underconfidence, as the

horizon gets shorter.

The benefit from running a panel regression as in (21) is twofold. First, we explicitly
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Figure 9: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy?
Baseline vs Weighted

Baseline vs Beta

test whether predictive distributions are correctly scaled using the entire panel, rather than

forecaster by forecaster, thereby getting a clear answer on whether the rational expectation

hypothesis is rejected or not for the SPF. Second, we obtain quantitative estimates of the

average degree of over/under-confidence that are not marred by the small sample problem

affecting individual forecasters’ regressions. The finding that at longer horizons forecasters

are as much as 3 times as confident as they should be, for instance, was not known to our
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knowledge. And so is the finding that at horizon of about one year we cannot reject the

hypothesis that αq = 1 for inflation forecasts. Also, previous literature mostly used point

forecasts, while of course under rational expectations equation (20) holds for the mean, but

not necessarily for the point forecast if this differs from the mean (Figure D-11 in the Ap-

pendix shows that the results for the point forecasts are not very different at long horizons,

but can be quite different at short horizons).

Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-

curacy?

Next, we explore a different implication of the noisy rational expectations hypothesis:

subjective uncertainty and forecast accuracy should co-move, both across forecasters and

over time. Taking logs of both sides of equation (19) and dividing by 2 we obtain:

ln |yt − Et−q,i[yt]| − lnσt|t−q,i =
1

2
ln ηi,t,t−q, (22)

implying that in the panel regression

ln |yt − Et−q,i[yt]| = β0,q + β1,q lnσt|t−q,i + ϵt,i,q, t = 1, .., T, i = 1, .., N. (23)

the coefficient β1,q ought to be equal to 1 under rational expectations. Equation (23) is

estimated via OLS where the standard deviation σt|t−q,i is measured using the posterior

mean of the standard deviation estimated using our approach, and robust standard errors

are computed. Figure 8 plots the point estimates of β1,q for different horizons (crosses) and

the whiskers denote the two-standard deviations posterior intervals.

It is striking that for output growth there is no significant relationship between subjective

uncertainty and the size of the ex-post forecast error for horizons above one year. As the

forecast horizon shortens the relationship becomes tighter, and for q = 1 one cannot reject

the hypothesis that β1,1 = 1. For inflation the estimates of β1,q hover around 0.5 for longer

horizons, but increase toward 1 as the horizon shortens, with β1,1 that is also not significantly

different from 1.

Figure 10 shows the estimates of β1,q controlling for time, forecaster, and both time

and forecaster fixed effects in order to ascertain whether the results in Figure 8 are mostly

due to differences across forecasters or over time. The results with time fixed effects (top

panels) indicate that for output growth it is generally not the case that forecasters with

lower subjective uncertainty have lower absolute forecast errors on average, even for short
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Figure 10: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects
Output Growth Inflation

Time Fixed Effects

Forecaster Fixed Effects

Time and Forecaster Fixed Effects

horizons. At longer horizons there is little relationship also for inflation, although for very

short horizons β1,q is one or very close to one. The results with forecaster fixed effects (middle
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panels) suggest that changes over time in the standard deviation of the predictive density

for inflation or output do not map into changes in forecast accuracy for long horizons, but

they do so pretty well for horizons of two quarters or less. This is the case also when we

include both forecaster and time fixed effects (bottom panels). When forecasters change

their subjective uncertainty, possibly because the quality of their private signal has changed,

on average this maps one-to-one into corresponding changes in the absolute forecast errors

for horizons close to one quarter, but not for longer horizons. The Appendix shows that all

these results are broadly robust to different samples.

Figure 11: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Mean vs Point Projections
Output Growth Inflation

To our knowledge, this approach to testing the noisy rational expectations model and

set of results are both new to the literature. As mentioned, Clements (2014a) computes

time series averages of σt|t−q,i for each forecaster and plots them against the corresponding

predictive root mean square error (RMSE) computed during the same period (Clements

adjusts for the unbalanced nature of the sample—that is, the fact that each forecaster’s

average is computed for a different time period—by constructing weighted averages where

the weights reflect the average forecast error or subjective uncertainty during that period).

Clements concludes that “there is little evidence that more (less) confident forecasters are

more (less) able forecasters.” This exercise compares to our model with time fixed effects,

where we study whether forecasters that are more uncertain also have higher absolute forecast

errors. Our results agree with Clements for output growth and inflation at long horizons, but
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differ at short horizons. One reason for the difference is that Clements uses point forecasts

while expression (18) only holds for the mean: if RMSEs are computed using predictions

other than the mean, there is no a priori reason why they should match the subjective

standard deviation, even under rational expectations. In fact Figure 11 shows that when we

use the point predictions (gray diamonds) the correspondence between subjective uncertainty

and forecast error vanishes at short horizons.14

Most important, the purely cross-sectional comparison undertaken so far by the litera-

ture misses the time dimension of our regression, where we investigate whether changes in

subjective uncertainty over time actually map into changes in forecasting performance. This

aspect is particularly important as it sheds light on whether forecasters correctly anticipate

periods of macroeconomic uncertainty. It also misses the fact that while differences in sub-

jective uncertainty are persistent, forecasters do change their mind about their subjective

uncertainty. This is a feature of the data that cross-sectional regressions do not exploit. The

finding that in the time dimension the mapping between subjective uncertainty and forecast

accuracy is just not there for output, and is only partial for inflation, at longer horizons, but

is in line with the noisy rational expectations model for both output and inflation at short

horizons, is entirely novel to our knowledge.

A Location Test: The Relative Accuracy of Mean and Point Predictions

In light of the different results obtained for mean and point forecasts displayed in Fig-

ure 11, we now briefly discuss the relative forecasting accuracy of mean versus point forecasts.

The top panels of Figure 12 shows OLS estimates of the coefficient γq in the panel regression

ln
(yt − Et−q,i[yt])

2

(yt − yppt,t−q,i)
2

= γq + ϵt,i,q, t = 1, .., T, i = 1, .., N. (24)

where yppt,t−q,i is the point forecast for yt made by forecaster i in period t− q.

Estimates of γq significantly greater than 0 indicate that on average mean projections

fare worse than point projections in terms of mean squared error. In fact, these estimates

can be interpreted as the percentage improvement/worsening in forecast accuracy for point

relative to mean projections. For horizons longer than one year estimates of γq are not

significantly different from 0 for output growth, and only slightly positive for inflation. This

14A apter comparison with Clements cross sectional results is in Figure D-14 in the Appendix where we

show the results with time fixed effects and point forecasts. Indeed we find that most coefficients are not

significantly different from 0 for point forecasts.



34

Figure 12: Relative Accuracy of Mean vs Point Projections
Output Growth Inflation

Log Ratio of Squared Forecast Errors (γq)

Fair-Shiller Regressions: Coefficients on Mean (δ1,q, Black) and Point Prediction (δ2,q, Gray)

Fair-Shiller Regressions: Intercept δ0,q

result may partly reflect the fact that for these horizons point and mean predictions are not

very different (see Engelberg et al., 2009). As the horizon gets shorter the estimates tend to
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become much larger and significantly positive for both output growth and inflation.

The result that point forecasts perform better than mean forecasts in terms of mean

squared error for short horizons is not new to the literature: Clements (2009, 2010) reports

mean squared forecast errors for horizons shorter than one year and find that these are lower

for point than for mean projections. As in Clements (2010), we interpret these results explic-

itly as an indirect test of the rationality of density projections: under rational expectations,

it better be that the mean of the predictive distribution produces a lower mean squared

error than any other point prediction regardless of the forecasters’ loss function. The fact

that for short horizons this is clearly not the case casts some doubt on explanations for the

divergence between mean and point forecasts that rely on the forecasters’ loss function (e.g.,

Patton and Timmermann, 2007; Elliott et al., 2008; Lahiri and Liu, 2009).

As a further test of the rationality of mean projections, we also run the Fair and Shiller

(1990) regression

yt = δ0,q + δ1,qEt−q,i[yt] + δ2,qy
pp
t,t−q,i + ϵt,i,q, t = 1, .., T, i = 1, .., N. (25)

The rationality of density projections would imply δ0,q = 0, δ1,q = 1, and δ2,q = 0. If point

projections yppt,t−q,i coincide with mean forecasts then the two regressors are multicollinear.

The middle panels of Figure 12 report estimates of δ1,q (black crosses) and δ2,q (gray dia-

monds) for different horizons q, while the bottom panels report estimates for the constant

δ0,q = 1. For horizons longer than one year, estimates of δ1,q are generally larger than those

for δ2,q. Estimates for δ1,q are significantly below 1, and estimates for the constant are signif-

icantly different from 0. As the horizon shortens, estimates for the constant become closer

to 0, in line with rational expectations, but estimates of δ2,q rise toward 1 while estimates

of δ1,q fall to 0, indicating that point predictions are much closer to actual outcomes than

mean forecasts.

Summing Up: Are SPF Density Forecasts Consistent with the Noisy Rational

Expectation Hypothesis?

The body of evidence collected in this section suggests that the answer is no. For

horizons close to two years there is strong evidence that 1) forecasters are overconfident,

and 2) there is virtually no relationship between differences in subjective uncertainty both

across forecasters and over time and differences in forecasting performance. This is the case

for both output growth and inflation, although overconfidence for output growth is quite



36

striking. For horizons close to one year we cannot reject that inflation density forecasts are

correctly scaled, while output growth density forecasts flip from being overconfident to being

underconfident. For both, the mapping between ex-ante uncertainty and ex-post forecast

errors is far from one. For very short horizons, density forecasts are correctly scaled for

output growth, and slightly underconfident for inflation. For both output and inflation there

is (almost) a one-to-one mapping between subjective and ex-post uncertainty, both across

forecasters and over time, in accordance with the noisy rational expectation hypothesis. But

while the second moments of the density projections seems to line up with theory at short

horizons, the first moments do not: mean projections deliver higher mean squared errors

than point projections.

In sum, we reach a similar conclusion for density projections as Patton and Timmermann

(2010) reach for point forecasts, namely that differences across forecasters (and, in our case,

also over time) cannot be explained by differences in information sets. One hypothesis is

that these differences stem from heterogeneity in models.

IV Conclusions

In this paper we presented a novel approach for conducting inference using data from prob-

abilistic surveys, and used it to investigate whether US Survey of Professional Forecasters

density projections for output growth and inflation are consistent with the noisy rational

expectations hypothesis. We find that for horizons close to two years there is no corre-

spondence between subjective uncertainty and forecast accuracy for output growth density

projections, both across forecasters and over time, and only a very mild correspondence

for inflation projections, in contrast to what rational expectations would predict. As the

horizons shortens, the relationship becomes one-to-one, in accordance with the theory.

While the inference approach we propose arguably several advantages relative to current

practice—for starters the fact that we explicitly conduct inference—it is important to point

out some limitations of our analysis. We provided some consistency results that take advan-

tage of the non parametric nature of the approach, but these only apply to the model as a data

generating process for the data that we observe—the bin probabilities. Regarding the ob-

jects we are truly interested in—the underlying continuous predictive densities—consistency

results are only available in the unrealistic case that the number of bins goes to infinity and

the bin width goes to zero. When these conditions are not met, the limited information
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provided by forecasters implies that posterior uncertainty regarding the objects of interest

remains even when the number of forecasters goes to infinity, simply because there is not

enough information to identify the underlying predictive densities. This implies that the

results obtained with our approach may be sensitive to the choice of the base function and

of priors. More work needs to be done in this dimension.

In addition, the approach proposed in this paper deals with one survey (one cross-section)

and one forecast variable at the time. It would be interesting to extend the approach to a

panel context, which would permit joint inference across surveys for any object of interest.

We leave this extension to future research.
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Appendix A-1

Appendix

A Data description

We focus on the Survey of Professional Forecasters, managed since 1992 by the Federal

Reserve Bank of Philadelphia, and previously by the American Statistical Association and

the National Bureau of Economic Research. The panel of forecasters include university

professors and private-sector macroeconomic researchers, and the composition of the panel

changes gradually over time. The survey, which is performed quarterly, is mailed to panel

members the day after the government release of quarterly data on the national income and

product accounts. We restrict our attention to the two variables for which the SPF has

probabilistic questions, namely year-over-year GDP growth and GDP deflator inflation over

the sample 1982Q1-2021Q4.

B The Gibbs Sampler

For computational reasons, we take a data augmentation approach and write the Gibbs

sampler using the joint distribution h(z, ξ|θ). Our infinite mixture model is then

hG(z, ξ) =

∫
h(z, ξ|θ)G(dθ) =

∞∑
k=1

wkh(z, ξ|θk). (A-1)

Our Gibbs sampler applied to the cross section of (zi, ξi), i = 1, . . . , n uses the convenient

approach proposed by Walker (2007) and Kalli et al. (2011). For each forecaster i, conditional

on the sequence of weights wk’s (w1:∞) and the sequence of atoms θk’s (θ1:∞), expression

(A-1) can be written as the marginal distribution of

h(zi, ξi, ui|w1:∞,θ1:∞) =
∞∑
k=1

I(ui < wk)h(zi, ξi|θk) (A-2)

with respect to ui, where ui is uniformly distributed over the interval [0, 1], and independent

across i, and I(·) is an indicator function. This implies that the conditional distribution of

zi and ξi given ui, the weights and the atoms, is

h(zi, ξi|ui, w1:∞,θ1:∞) =
1

h(ui|w1:∞)

∑
k∈A(ui|w1:∞)

h(zi, ξi|θk), (A-3)
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where the set A(ui|w1:∞) includes all the atoms with a weight wk larger than ui (A(ui|w1:∞) =

{k : ui < wk}), and the marginal h(ui|w1:∞) =
+∞∑
k=1

I(ui < wk) since each h(·|θk) integrates

to one. Unlike expression (A-1), expression (A-3) is a finite mixture where each component

has probability
1

h(ui|w1:∞)
, which is straightforward to draw from using standard methods.

Specifically, we will use the auxiliary indicators di’s, which are equal to k if we draw from

the kth mixture component (note that, given ui, the k
th component will only be drawn if it

belongs to the set A(ui|w1:∞)). The resulting complete-data likelihood function is

L(z1:n, ξ1:n|u1:n, d1:n, v1:∞,θ1:∞) =
n∏
i=1

I{ui<wdi
}h(zi, ξi|θdi) (A-4)

with di ∈ {k : ui < wk}, where v1:∞ is the infinite dimensional sequence containing the

stick-breaking components which map into the weights via expression (12).

Let Dk = {i : di = k} denote the set of indexes of the observations allocated to the

k-th component of the mixture. Let D = {k : Dk ̸= ∅} denote the set of indexes of the

non-empty mixture components (in the sense that at least one i is using the kth component)

and d̄ = maxD the overall number of stick-breaking components used. The Gibbs sampler

works as follows:

1. v1:∞, u1:n|d1:n,θ1:∞, ψ, z1:n, ξ1:n

Call v1:d̄ the stick-breaking elements associated with the mixture components that are

being used (conditional on d1:n). Following Kalli et al. (2011), drawing from the joint

posterior of v1:d̄, vd̄+1:∞, and u1:n, conditional on all other parameters, is accomplished

by drawing sequentially from: (a) the marginal distribution of v1:d̄, (b) the conditional

distribution of u1:n given v1:d̄, and (c) from the conditional distribution of vd̄+1:∞ given

u1:n and v1:d̄.

(a) v1:d̄|d1:n,θ1:∞, ψ, z1:n, ξ1:n.

After integrating out the ui’s, the posterior of v1:∞ is proportional to

p(v1:∞|d1:n,θ1:∞, ψ, z1:n, ξ1:n) ∝

(
n∏
i=1

wdih(zi, ξi|θdi)

)(
∞∏
l=1

(1− vl)
ψ−1

)

∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi, ξi|θdi)

)(
∞∏
l=1

(1− vl)
ψ−1

)
.
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Now note that since vd̄+1:∞ do not enter the likelihood (A-4) – that is, the term

within the first parenthesis – they can be easily integrated out resulting in

p(v1:d̄|d1:n,θ1:∞, ψ, z1:n, ξ1:n) ∝

(
n∏
i=1

(
vdi

di−1∏
l=1

(1− vl)

)
h(zi, ξi|θdi)

)(
d̄∏
l=1

(1− vl)
ψ−1

)
.

Therefore samples for v1:d̄ are obtained by drawing each vk independently from

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)
ψ+bk−1vakk (A-5)

where ak =
n∑
i=1

I(di = k) and bk =
n∑
i=1

I(di > k), that is, vk is drawn from a

Beta(ak + 1, bk + ψ).

(b) u1:n|v1:d̄, d1:n,θ1:∞, ψ, z1:n, ξ1:n.

The likelihood (A-4), seen as a function of each ui, i = 1, . . . , n, is simply a

uniform distribution over [0, wdi ]. Hence

π(ui| . . . ) ∝
1

wdi
I(ui < wdi). (A-6)

(c) vd̄+1:∞|u1:n, v1:d̄, d1:n,θ1:∞, ψ, z1:n, ξ1:n.

Again, vd̄+1:∞ do not enter the likelihood (A-4), so samples from those vk with

k > d̄ are simply obtained by drawing from the prior Beta(1, ψ):

π(vk|u1:n, d1:n, . . . ) ∝ (1− vk)
ψ−1. (A-7)

Of course, even if it is straightforward to execute, we do not want to generate

an infinite number of draws. Fortunately we do not need to, as explained in

Walker (2007). Inspection of (A-4) reveals that those mixtures for which wk <

ui will never be used, at least given the the draw for ui. Let n̄i the smallest

integer such that

n̄i∑
k=1

wk > 1 − ui. Since by construction
∞∑
k=1

wk = 1, it must

be that
∞∑
n̄i+1

wk < ui and therefore, a fortiori, wk < ui for k > n̄i. Now define

n̄ = max{n̄i, i = 1, . . . , n}. Conditional on u1:n, at most we will use n̄ mixture

components in the estimation. Hence we only need to draw vd̄+1:n̄.

2. θ1:∞|v1:∞, u1:n, d1:n, ψ, z1:n, ξ1:n
For the same argument given above, we actually do not have to draw an infinite number

of atoms, but only as many as they may possibly be used (at least given the current

draw of u1:n) – that is, at most n̄. Note also that given the way the ui’s are drawn

(from a uniform distribution over [0, wdi ]), if k ∈ D then k ≤ n̄.
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(a) For k ∈ D draws of θk are obtained from

π(θk| . . . ) ∝

(∏
i∈Dk

h(zi, ξi|θk)

)
G0(θk) (A-8)

Since the joint distribution is not tractable, samples have been generated by

Adaptive Metropolis Hastings (AMH) proposed in Andrieu and Thoms (2008).

More specifically, at the j-th iteration of the AMH for a parameter θ of dimension

p the proposal distribution is

θ∗ ∼ N (θ(j−1),Υ(j)) (A-9)

with covariance matrix Υ(j) = exp{ξ(j)}Ip where ξ(j) is adapted over the iterations

as follows

ξ(j) = ξ(j−1) + γ(j)(α̂(j−1) − ᾱ) (A-10)

where ᾱ = 0.3 represents the desired level of acceptance probability, and α̂(j−1) is

the previous iteration estimate of the acceptance probability (i.e. the acceptance

rate). The diminishing adaptation condition is satisfied by choosing γ(j) = j(−a).

In the application we set a = 0.7.

(b) For k /∈ D, k ≤ n̄ draws of θk are obtained via independent draws from the base

measure (??).

We therefore obtained a sequence of draws θ1:n̄, which we will use in the next Gibbs

sampler step.

3. d1:n|v1:∞, u1:n,θ1:∞, ψ, z1:n, ξ1:n

Draws for each di, i = 1, . . . , n, are obtained by drawing from a multinomial with

weights proportional to

π(di| . . . ) ∝ I(ui < wdi)h(zi, ξi|θdi) (A-11)

with di ∈ {1, . . . , n̄i}. Note that in this draw we consider all possible mixture compo-

nents from 1 to n̄i, not only those used so far (that is, those in D). They will be drawn

proportionally to their ability to fit of the data, as measured by h(zi, ξi|θk).
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C Further theoretical results

C.A Model properties

In this section, we present some properties which illustrate the flexibility of our non-parametric

random histogram model. The behaviour of the model as the number of bins goes to infinity

shows that our framework is theoretically sound since it can be used to approximate any

subjective distribution when (2) holds.

Let (zi, ξi), i = 1, . . . , n be i.i.d. samples from h(z, ξ|θ) and assume the forecasters never

report zero probabilities (that is, conditional on ξij = 0 ∀j), then in expectation zij coincides

with νj: E[zij|θ] = νj(θ). Expression (A-1) then implies that the distribution of each zij,

conditional on ξij = 0 ∀j, will be centered at the infinite mixture of the bin probabilities νj’s

implied by each mixture component F (·|θk):

E [zij|G] =
∞∑
k=1

wkνj(θk) =
∞∑
k=1

wk(F (yj|θk)− F (yj−1|θk)). (E-1)

We show that our random histogram (prior) model converges to an infinite dimensional

(prior) model approximating any subjective distribution in the topology of weak convergence.

This flexibility implies that the non-parametric prior alleviates possible misspecification is-

sues.

Introduce a latent Dirichlet process Zi,∞(·)|θ̃i ∼ DP(ϕ(θ̃i), F (·|θ̃i)) with parameters

ϕ(θ̃i) and F (·|θ̃i), given θ̃i fromG. This process defines a random measure on the observation

space Y of the variable of interest (inflation), that is the support set of the subjective

distribution F (·|θ), and admits the equivalent stick breaking representation

Zi,∞(y) =
∞∑
j=1

wijI{yij ≤ y} (E-2)

where yij j = 1, 2, . . . are i.i.d. random variables with common distribution F (·|θ̃i) and wij
j = 1, 2, . . . are obtained by using a sequence of i.i.d. Be(1, ϕ(θ̃i)) random variables.

∆J and Zi,∞(y) on Y .

Proposition 1. If αj = 0, j = 1, . . . , J , the Bayesian model

zi|G
ind∼ hG(z), i = 1, . . . , n

G ∼ DP(ψ,G0)
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where zi = (zi,1, . . . , zi,J) admits the following stochastic representation:

(zi,1, . . . , zi,J) := (Zi,∞(y1), Zi,∞(y2)− Zi,∞(y1), . . . , 1− Zi,∞(yJ−1)) i = 1, . . . , n

Zi,∞
ind∼ DP(ϕ(θ̃i), F (·|θ̃i)) i = 1, . . . , n

θ̃i
i.i.d.∼ G i = 1, . . . , n

G ∼ DP(ψ,G0).

given the true subjective probability distribution F (·|θi) of the i-th forecaster and its

level of noise ϕ(θi), the forecaster reports the weights (zi,1, . . . , zi,J) corresponding to the

increments of a ”noisy” version Zi,∞ of F (·|θi). This ”noisy” version is the CDF obtained

by a Dirichlet process with base measure F (·|θi) and concentration parameter ϕ(θi).

When α(·|ϵ) ̸= 0 an extra noise is set in, resulting in a random proportions of bins which

are randomly set to zero with probability α(νj(φi)|ϵ). After this deletion, in order to obtain

the zi, the increments of the Dirichelet process F̃i are simply normalized to sum one.

forecaster-specific subjective distribution. Given the subjective probability distribution

F (·|θ̃i) and the level of noise ϕ(θ̃i), the forecaster reports the weights (zi,1, . . . , zi,J) corre-

sponding to the increments of a ”noisy” version Zi,∞ of F (·|θ̃i). This ”noisy” version is

the CDF obtained by a forecaster-specific Dirichlet process with base measure F (·|θ̃i) and
concentration parameter ϕ(θ̃i).

By (E-2), the latent Dirichlet process Zi,∞ is a random discrete CDF with infinite number

of discontinuity points. To exemplify we depict Zi,∞ by the red stepwise line in Figure E-

1. Despite of its discreteness, the process Zi,∞ ensures that our prior model gives positive

probability to any weak neighbourhood of any distribution defined on the support set of

F (·|θ̃i). A combination of Proposition 1 and Theorem 3.2.4 of Ghosh and Ramamoorthi

(2003) gives the following result.

Corollary 1. Assume that Y ⊂ R is the support set of F (·|θ) for any θ. Let F (·) be a

distribution function with support subset of Y , then P ({Zi,∞ ∈ UF}) > 0 for any weak

neighbourhood UF of F (·).

The random process Zi,∞ can be seen as the limit of the histograms zi when the number of

bins goes to infinity. To show this formally, we associate the random histogram zi to a random

CDF Zi,J . For any J we consider the partition PJ = {yJ0 = −∞ < yJ1 < . . . < yJJ = +∞}
and define the following one-to-one mapping between zi and the CDF Zi,J . Without loss

of generality, we assign to the middle point of each interval the bin probability mass, and
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yy− y1 y2 y3 . . . yJ−2 yJ−1 y+

Zi,J(y),Zi,∞(y)

zi,1

zi,2 + zi,1

zi,3 + zi,2 + zi,1

zi,J−1 + . . .+ zi,1

1

Figure E-1: Mapping between zi,j, j = 1, . . . , J , ZiJ(y) and Zi,∞(y).

account for the two open bins (first and last) by introducing two auxiliary points yJ−, y
J
+,

such that −∞ < yJ− < y1 < yJ−1 < yJ+ < +∞. With this position we define the process

Zi,J(y) (black line in Figure E-1):

Zi,J(y) =



0 if y < yJ−

zi,1 if yJ− ≤ y < (yJ1 + yJ2 )/2

zi,1 + · · ·+ zi,j if y ∈ [(yJj−1 + yJj )/2, (y
J
j + yJj+1)/2) for 2 < j ≤ J − 2

zi,1 + · · ·+ zi,J−1 if y ∈ [(yJJ−2 + yJJ−1)/2, y
J
+)

1 if y ≥ yJ+

The next theorem shows that Zi,J converges to Zi,∞ with probability one in the topology

of the weak convergence. Moreover, under continuity assupmtions, the asymptotic mean

of Zi,J , conditionally on θ̃i, coincides with the true subjective distribution. Note that,

conditionally on θ̃i, the mean of Zi,∞ is the true subjective distribution, i.e. E[Zi,∞(·)|θ̃i] =
F (·|θ̃i).

Theorem 2. Assume that αj = 0 for all j and the sequence of partitions (PJ)J is such that

y1 → −∞, yJ−1 → +∞ and max{|yj+1 − yj| : 1 ≤ j ≤ J − 2} → 0 for J → +∞. Then,

P{ lim
J→+∞

Zi,J(y) = Zi,∞(y) for any y point of continuity of Zi,∞} = 1.
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If F (·|θi) is a continuous CDF, then

lim
J→+∞

E[Zi,J(y)|θ̃i] = E[Zi,∞(y)|θi] = F (y|θ̃i) a.s.

C.B Further asymptotics

C.B.1 Posterior consistency

If αj = 0 for j = 1, . . . , J , i.e. forecasters give non-zero probability to each bin, the sample

space is Z = ∆J and H is the set densities (with respect to the Lebesgue measure) on ∆J .

In this case, Kullback-Leibler divergence between two distribution h0, g on Z = ∆J is easily

defined as

KL(h0, g) :=

∫
Z
h0(z) log

(h0(z)
g(z)

)
dz.

As a corollary of the main theorem, we get a simpler result for the case in which αj(θ) = 0

for all j = 1, . . . , J . In this case M∗ is replaced by the set M of finite mixtures of

h(z|θ) =
∏J

j=1 Γ(ϕ(θ)νj(θ))

Γ
(∑J

j=1 ϕ(θ)νj(θ)
) J−1∏

j=1

z
ϕ(θ)νj(θ)−1
j

(
1−

J−1∑
j=1

zj

)ϕ(θ)νJ (θ)−1

.

and H∗
0 by the set H0 of densities on ∆J that can be approximated in the Kullback-Leibler

sense by densities in M, i.e.

H0 = {h0 density on ∆J : ∀ ϵ > 0 ∃ g ∈ M s.t. KL(h0, g) ≤ ε }.

Theorem 3. Let Θ be an open subset of Rm for some m and αj(θ) = 0 for all j = 1, . . . , J .

Assume that θ 7→ (ϕ(θ)ν1(θ), . . . , ϕ(θ)νJ(θ)) is a continuous function on RJ
+ such that

ϕ(θ)νj(θ) > 0 for every j = 1, . . . , J . If G0 has full support, then the posterior is weakly

consistent at any density h0 in H0 such that∫
∆J

∣∣∣∣∣log
(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz < +∞. (E-3)

Remark 1. If αj(θ) = 0 for all j = 1, . . . , J , ϕ(θ) = ϕ, and a mixture of normal distributions

is assumed for the subjective distribution, that is

F (y|θ) =
M∑
i=1

ωiΦ(y|µi, σ2
i ) (E-4)
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then the parameter vector is θ = (µ1, . . . , µM , σ
2
1, . . . , σ

2
M , ω1, . . . , ωM , ϕ). If G0 has full

support, then the posterior is weakly consistent at any h0 in H0 satisfying (E-3). Indeed,

in this case (ϕν1(θ), . . . , ϕνJ(θ)) is a continuous function on RJ
+ and ϕνj(θ) > 0 for every

j = 1, . . . , J .

The next Proposition gives some conditions ensuring that any continuous density func-

tion belongs to H0.

Proposition 2. Assume αj(θ) = 0 for all j = 1, . . . , J and that θ 7→ (ϕ(θ)ν1(θ), . . . , ϕ(θ)νJ(θ))

is a continuous function on RJ
+ such that ϕ(θ)νj(θ) > 0 for every j = 1, . . . , J . If for every

a = (a1, . . . , aJ) ∈ [1,+∞)J and δ > 0, there is θδ in Θ such that ∥a − aδ∥∞ ≤ δ with

aδ = ϕ(θδ)(ν1(θδ), . . . , νJ(θδ)), then any continuous density function on ∆J belongs to H0.

Remark 2. Note that combining Theorem 3 and Proposition 2 one gets that, under the

assumptions of Proposition 2, if G0 has full support, then the posterior is weakly consistent at

any h0 which is continuous on ∆J and satisfies (E-3). An example in which all the conditions

of Proposition 2 are met is the fully non-parametric case

F (y|θ) =
J∑
j=1

φjIAj
(y) (E-5)

where Aj = [yj,+∞), j = 1, . . . , J − 1, AJ = [y+,+∞] and νj(θ) = φj, j = 1, . . . , J .

Conditions in Proposition 2 are satisfied also in the Gaussian mixture case of (E-4) with

M = J − 1.

C.B.2 Posterior consistency of the consensus distribution

The aggregate subjective distribution, also known as consensus distribution, is defined as

F̄ (y) =
1

n

n∑
i=1

Fi(y)

where Fi(y) is the forecast-specific subjective probability defined in (14). In what follows,

Fn+1 denotes the posterior predictive distribution of y, defined as

Fn+1(y) := P{yn+1 ≤ y|zi, i = 1, . . . , n}.

The next proposition shows the connection between the two quantities in our model.
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Proposition 3. The distributions F̄ and Fn are related by

Fn+1(y) =
n

n+ ψ0

F̄ (y) +
ψ0

n+ ψ0

∫
F (y|θ)G0(dθ).

Using the previous relation one obtain a useful asymptotic properties of the consensus

distribution.

Proposition 4. Under the same assumptions of Theorem 3,

lim
n→+∞

(
Fn+1(yi)− Fn+1(yi−1)

)
= lim

n→+∞

(
F̄ (yi)− F̄ (yi−1)

)
=

∫
zih0(z)dz a.s.

for i = 1, . . . , J . Hence, if there exists F ∗ such that

∫
zih0(z) = F ∗(yi)− F ∗(yi−1), then

lim
n→+∞

Fn+1(yi) = lim
n→+∞

F̄ (yi) = F ∗(yi) a.s..

As in Subsection C.A, we consider set of nested partitions PJ = {yJ0 = −∞ < yJ1 <

. . . < yJJ = +∞} in such a way PJ+1 is a refinement of PJ . We assume that observations

zJ1 , . . . , z
J
n are available with a ”true” distribution h0 = hJ0 inM, i.e. h0(z) =

M∑
i=1

wi,0h(z|θi,0)

for suitable integer M , positive weights (w1,0, . . . , wM,0) and parameters θ1,0, . . . ,θM,0 in Θ.

Note that with these hypotheses zJ1 , . . . , z
J
n are consistent in J , that is if J ′ > J then

zJi =
∑
j∈I(i)

zJ
′

j if the i-th bin in PJ correspond the the union of the bins j ∈ I(i) in PJ ′ . This

allows to consider limit jointly in the number of observations (n→ +∞) and in the number

of bins (J → +∞). Note also that for every J and every bin (yi−1, yi] in PJ∫
zih

J
0 (z) = F ∗(yi)− F ∗(yi−1).

for

F ∗(y) :=
M∑
i=1

wi,0F (y|θi,0).

Proposition 5. In the setting described above, under the same assumptions of Theorem 2

on PJ , then
lim

J→+∞,n→+∞
Fn+1(y) = lim

J→+∞,n→+∞
F̄ (y) = F ∗(y) a.s.

for every y point of continuity of F ∗.
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D Proofs

D.A Details on formula (16)

Let H be the set of all the densities with respect to λ, i.e. the densities g that factorize as

g(ξ, z) = g(ξ)g(zξ|ξ). This assumption is coherent with the model assumption in (4), indeed

h(ξ, z|θ) = h(ξ|θ)h(zξ|θ, ξ), (B-1)

where

h(ξ|θ) = 1

c(θ)

J∏
j=1

αj(θ)
ξj(1− αj(θ))

1−ξj

and h(zξ|θ, ξ) = h(z|θ, ξ) is the Dirichlet distribution of parameters [ϕ(θ)νj(θ) : j ∈ J (ξ)]

defined on the non zero elements zξ.

Given two densities h0 and g in H the Kullback-Leibler divergence between h0 and g is

defined as

KL(h0, g) =

∫
Z
h0(ξ, z) log

(h0(ξ, z)
g(ξ, z)

)
dλ.

Hence, writing h0(z) = h0(ξ)h0(zξ|ξ) and g(ξ, z) = g(ξ)g(zξ|ξ), by Fubini Theorem one

can re-arrange the previous expression as∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

h0(zξ|ξ) log
(h0(zξ|ξ)h0(ξ)
g(zξ|ξ)g(ξ)

)
dzξ

=
∑
ξ∈X

h0(ξ) log
(h0(ξ)
g(ξ)

)
+
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

h0(zξ|ξ) log
(h0(zξ|ξ)
g(zξ|ξ)

)
dzξ.

D.B Proofs of Theorem 1 and 3

The proof of Theorem 1 is based on an application of Theorem 1 and Lemma 3 of Wu and

Ghosal (2009a,b). In order to prove Theroem we need a slight generalization of these results.

For the shake of clarity we state and prove this generalization.

In what follows, we denote with supp(µ) the weak support of a probability measure

µ. We assume that X0 is a subset the finte set X = {ξ ∈ {0, 1}J : |ξ| < J}. Following

the notation introduced above, the sample space Z is the set of all the pairs (ξ, z), where

ξ = (ξ1, . . . , ξJ), z = (z1, . . . , zJ), ξi = I{zi = 0}. The non-null elements of z, denoted by

zξ, takes values in an open subset Zξ of RJ−|ξ|. In our application Zξ = ∆J−|ξ|. On the
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sample space Z, one can thus define a σ-finte measure λ(dξdz) = c(dξ) ⊗ Lξ(dzξ) where c

is the counting measure on X and, given ξ, Lξ is the Lebesgue measure on Zξ ⊂ RJ−|ξ|.

Let H be the set of all the densities with respect to λ, i.e. the densities g that factorize

as g(ξ, z) = g(ξ)g(zξ|ξ). We also assume that the kernel h(ξ|θ)h(zξ|θ, ξ) factorizes in the

same way, i.e.

h(ξ, z|θ) = h(ξ|θ)h(zξ|ξ,θ).

Finally, given a probability measure G on Θ, we write

hG(ξ, z) =

∫
Θ

h(ξ, z|θ)G(dθ). (B-2)

and we assume that Π is the prior on H induced by the map (B-2) when G has prior Π̂.

In our application, hG(ξ, z) is given by (4) and Π̂ is the Dirichlet process prior DP(ψ,G0).

Theorem 4. Let Θ be a Polish space and h0 a density in H. If for any ε > 0 there is a

probability measure Gε ∈ supp(Π̂) and a closed set Dε in Θ such that

(H1) KL(h0, hGε) =
∑
ξ∈X

h0(ξ)

∫
Zξ

log
( h0(zξ|ξ)h0(ξ)
hGε(zξ|ξ)hGε(ξ)

)
h0(zξ|ξ, )dzξ < ε;

(H2) Dε contains supp(Gε) in its interior and for every ξ∫
Zξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ < +∞;

(H3) inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 for every ξ and every compact set Cξ in Zξ;

(H4) {θ 7→ h(ξ|θ)h(zξ|ξ,θ) : zξ ∈ Cξ} is uniformly equicontinuous on Dε, for every ξ and

every compact set Cξ in Zξ;

then Π{KL(h0, hG) ≥ ε} > 0 for every ε > 0 and hene Π is weakly consistent at h0.

Assumption (H1) corresponds to (A1) in Theorem 1 of Wu and Ghosal (2009a). As-

sumptions (H2)-(H3) correspond to assumptions (A7)-(A8) of Lemma 3 of Wu and Ghosal

(2009a), while (H4) is slightly different from the original assumption (A9), see Wu and Ghosal

(2009b). The theorem reduces to Theorem 1 and Lemma 3 of Wu and Ghosal (2009a,b) when

X0 is the single point ξ = (0, . . . , 0).



Online appendix B-4

Proof of Theorem 4. One has

KL(h0, hG) = KL(h0, hGε) +
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ

≤ ε+
∑
ξ∈X

h0(ξ)

∫
∆J−|ξ|

log
(hGε(zξ|ξ)hGε(ξ)

hG(zξ|ξ)hG(ξ)

)
h0(zξ|ξ)dzξ =: ε+ Aε(G).

If we show that there is an open neighbourhood V of Gε such that for every G in V one has

Aε(G) ≤ ε, then Π{KL(h0, hG) ≥ 2ε} > 0 for every ε > 0. To prove the claim, for every ξ

by (H2) we find a compact set Cξ such that∫
Cc

ξ

log
( hGε(zξ|ξ)hGε(ξ)

infθ∈Dε h(zξ|ξ,θ)h(ξ|θ)

)
h0(zξ|ξ)dzξ ≤

ε

4

and ∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

4 log(2)
.

Let V0 := {G : G(Dε) > 1/2}. Since Gε(Dε) = 1, by Portmanteau Theorem V is an open

neighbourhood of Gε. Now

hG(ξ, zξ) =

∫
Dε

h(ξ, zξ|θ)G(dθ) ≥ inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ)G(Dε),

hence, for every G in V1,∫
Cc

ξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(ξ, zξ)dzξ

≤
∫
Cc

ξ

log
( hGε(ξ, zξ)

infθ∈Dε h(ξ|θ)h(zξ|ξ,θ)

)
h0(zξ|ξ)dzξ + log(2)

∫
Cc

ξ

h0(zξ|ξ)dzξ ≤
ε

2
.

(B-3)

By condition (H4), for every ξ there are z
(i)
ξ ∈ Cξ i = 1, . . . ,m, such that for every zξ ∈ Cξ

there is i for which

sup
θ∈Dε

|h(ξ|θ)h(zξ|ξ,θ)− h(ξ, z
(i)
ξ |θ)| ≤ cε

12

where c := inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) > 0 by (H3). Since Gε(∂Dε) = 0, the set

Vξ := {G :

∫
Dε

h(ξ, z
(i)
ξ |θ)Gε(dθ)−

∫
Dε

h(ξ, z
(i)
ξ |θ)G(dθ)

∣∣∣ < cε

12
; i = 1, . . . ,m}

is a weak neighbourhood of Gε. Hence, for G in Vξ∣∣∣ ∫
Dε

h(ξ, zξ|θ)Gε(dθ)−
∫
Dε

h(ξ, zξ|θ)G(dθ)
∣∣∣ ≤ cε

4
(B-4)
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Since supp(Gε) ⊂ Dε,∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

∫
Cξ

log
(∫

Dε
h(ξ, zξ|θ)Gε(dθ)∫

Dε
h(ξ, zξ|θ)G(dθ)

)
h0(zξ|ξ)dzξ.

Hence, using log(x+ 1) ≤ x and (B-4), for G in V0 ∩ Vξ one obtains∫
Cξ

log
(hGε(ξ, zξ)

hG(ξ, zξ)

)
h0(zξ|ξ)dzξ ≤

ε

2
. (B-5)

At this stage, combining (B-3) and (B-5), one obtains that Aε(G) for every G in V =

V0 ∩ (∩ξVξ).

We can now prove both Theorem 3 and Theorem 1.

Proof of Theorem 3. The proof consists in an application of Theorem 4 for X0 = {(0, . . . , 0)}.
Let

ν̃(θ) := (ν̃1(θ), . . . , ν̃J(θ)) = (ϕ(θ)ν1(θ), . . . , ϕ(θ)νJ(θ)) (B-6)

and

Zθ =

∏J
j=1 Γ(ν̃j(θ))

Γ
(∑J

j=1 ν̃j(θ)
) .

Verification of (H1) of Theorem 4. By hypothesis, for every ε > 0 there is gε(z) =
Mε∑
i=1

wi,εh(z|θi,ε) in M such that KL(h0, gε) ≤ ε. To see that (H1) is satisfied, write gε(z) =∫
h(z|θ)Gε(dθ) = hGε(z) for Gε(dθ) =

Mε∑
i=1

wi,εδθi,ε
(dθ). Now supp(Gε) = ∪Mε

i=1{θi,ε}. To

conclude recall that if Π is DP(ψ,G0) and supp(Gε) ⊂ supp(G0), then Gε ∈ supp(Π); see,

for instance, Theorem 3.2.4 of Ghosh and Ramamoorthi (2003).

Verification of (H2) of Theorem 4. Given Gε as above, one can find a compact set Dε

in Θ such that Dε contains ∪Mε
i=1{θi,ε} = supp(Gε) in its interior.

Now

Iε(z) := inf
θ∈Dε

h(z|θ)

= inf
θ∈Dε

1

Zθ

J−1∏
j=1

z
ν̃j(θ)−1
j

(
1−

J−1∑
j=1

zj

)ν̃j(θ)−1

≥ C1,ε

J−1∏
j=1

z
µj,ε−1
j

(
1−

J−1∑
j=1

zj

)µJ,ε−1

=: I∗ε (z)
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where C1,ε = inf
θ∈Dε

Z−1
θ , µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Now one has that C1,ε > 0 and µj,ε > 0,

since Dε is compact and the νj(θ)s are continuous and strictly positive.

On the one hand hGε(z) ≥ Iε(z) and hence log(hGε(z)/Iε(z)) ≥ 0, on the other hand∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤

∫
log
(hGε(z)

I∗ε (z)

)
h0(z)dz

≤
∫ ∣∣∣∣∣∣∣log

 gε(z)∏J−1
j=1 z

µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣h0(z)dz+ | log(C1,ε)|.

Since

C2,ε

J−1∏
j=1

z
Aj,ε−1
j

(
1−

J−1∑
j=1

zj

)AJ,ε−1

≤ gε(z) ≤ C3,ε

J−1∏
j=1

z
Bj,ε−1
j

(
1−

J−1∑
j=1

zj

)BJ,ε−1

for suitable constants C2,ε, C3,ε, A1,ε, . . . , B1,ε, . . . , BJ,ε, it follows that∣∣∣∣∣∣∣log
 gε(z)∏J−1

j=1 z
µj,ε−1
j

(
1−

∑J−1
j=1 zj

)µJ,ε−1


∣∣∣∣∣∣∣ ≤ C4,ε

[
1 +

J−1∑
j=1

| log(zj)|+ | log(1−
J−1∑
j=1

zj)|

]

≤ C4,ε

[
1 +

∣∣∣∣∣log
(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣
]

Combining all the estimates, one gets∫
log
(hGε(z)

Iε(z)

)
h0(z)dz ≤ C5,ε

[
1 +

∫ ∣∣∣∣∣log
(
J−1∏
j=1

zj

(
1−

J−1∑
j=1

zj

))∣∣∣∣∣h0(z)dz
]
< +∞

by assumption (E-3). Hence

0 <

∫
log
( hGε(z)

infθ∈Dε h(z|θ)

)
h0(z)dz < +∞.

Verification of (H3) of Theorem 4. It follows immediately that, for every compact set C

in the open simplex ∆J ,

inf
z∈C

inf
θ∈Dε

h(z|θ) ≥ inf
z∈C

I∗ε (z)

and the right hand side is strictly positive.

Verification of (H4) of Theorem 4. Under the hypotheses, the function (θ, z) 7→ h(z|θ)
is continuous and hence uniformly continuous on the compact set C × Dε. It follows that

the family {(θ, z) 7→ h(z|θ) : z ∈ C} is uniformly equicontinuous on Dε.
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Proof of Theorem 1. The proof consists in an application of Theorem 4 for X0 = X and

follows the same line of the proof of Theorem 3. In the present case, everything has an extra

dependence on the fixed ξ in X . In place of Iε(z) one has

Iε(zξ|ξ) := inf
θ∈Dε

1

c(θ)

J∏
j=1

αj(θ)
ξj(1− αj(θ))

1−ξj 1

Zθ(ξ)

∏
j∈J ∗(ξ)

z
ν̃j(θ)−1
j

where

Zθ(ξ) =

∏
j∈J ∗(ξ) Γ(ν̃j(θ))

Γ
(∑

j∈J ∗(ξ) ν̃j(θ)
) .

Moreover,

Iε(zξ|ξ) ≥ C1,ε(ξ)
∏

j∈J ∗(ξ)

z
µj,ε−1
j =: I∗ε (zξ|ξ)

where

C1,ε(ξ) = inf
θ∈Dε

1

c(θ)

J∏
j=1

αj(θ)
ξj(1− αj(θ))

1−ξjZ−1
θ (ξ),

and µj,ε := sup{ν̃j(θ) : θ ∈ Dε}. Also in this case, C1,ε > 0 and µj,ε > 0, since Dε is compact,

νj(θ) and αj(θ) are continuous, 0 < αj(θ) < 1 and νj(θ) > 0, j = 1, . . . , J . Finally,

C2,ε(ξ)
∏

j∈J ∗(ξ)

z
Aj,ε−1
j ≤ hGε(ξ, z) ≤ C3,ε(ξ)

∏
j∈J ∗(ξ)

z
Bj,ε−1
j

for suitable constants C2,ε(ξ), C3,ε(ξ), A1,ε, . . . , B1,ε, . . . , BJ,ε. With this minor modifications,

the verification of (H1) and (H2) is exactly as in the proof of Theorem 3. Assumption (H3)

is true since

inf
zξ∈Cξ

inf
θ∈Dε

h(ξ|θ)h(zξ|ξ,θ) ≥ inf
z∈Cξ

I∗ε (z|ξ)

and the right hand side is strictly positive by the assumptions on the νj(θ)s and αj(θ)s.

Analogously,

(θ, zξ) 7→ h(ξ|θ)h(zξ|ξ,θ)

is uniformly continuous on the compact set Cξ ×Dε and hence (H4) follows.

D.C Proof of Proposition 2

The proof of Proposition 2 is divided in various Lemmata. For the sake of notational sim-

plicity set

D(z; a1, . . . , aJ) =
Γ
(∑J

j=1 aj

)
∏J

j=1 Γ(aj)

J−1∏
j=1

z
aj−1
j

(
1−

J−1∑
j=1

zj

)aj−1

.
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Note that

h(z|θ) = D(z; ν̃(θ)).

where ν̃(θ) is defined in (B-6).

Lemma 1. [Barrientos et al. (2015)] Let g0 be a continuous density on ∆J . Then, for every

ε > 0 there is a density gε(z) =
Mε∑
i=1

qi,εD(z; ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1 for every i and

j, such that

∥g0 − gε∥∞ ≤ ε.

Lemma 2. Let a = (a1, . . . , aJ) ∈ [1,+∞)J . If for any δ > 0 there is θδ ∈ Θ such that

∥a− ν̃(θδ)∥∞ ≤ δ then for any ε > 0 there is θε ∈ Θ such that

∥D(·; a1, . . . , aJ)−D(·; ν̃1(θε), . . . , ν̃J(θε))∥∞ ≤ ε.

Proof. The Proof is left to the reader.

Lemma 3. Assume that, for every a = (a1, . . . , aj) ∈ [1,+∞)J and every δ > 0 there is

θδ ∈ Θ such that ∥a − ν̃(θδ)∥∞ ≤ δ. Then, for every continuous density g0 on ∆J and for

every ε > 0, there is a density g̃ε(z) =
Mε∑
i=1

qi,εD(z; ν̃(θi,ε)) in M such that

∥g0 − g̃ε∥∞ ≤ ε.

Proof. By Lemma 1, there is a density gε(z) =
Mε∑
i=1

qi,εD(z; ai,1,ε, . . . , ai,J,ε) where ai,j,ε ≥ 1

for every i and j, such that ∥g0 − gε∥∞ ≤ ε/2. Now, by Lemma 2, there are θi,ε such

that ∥D(·; ai,1,ε, . . . , ai,J,ε) − D(·; ν̃1(θi,ε), . . . , ν̃J(θi,ε))∥∞ ≤ ε/2. Hence, setting g̃ε(z) :=
Mε∑
i=1

qi,εD(z; ν̃1(θi,ε), . . . , ν̃J(θi,ε)), one gets

∥g0 − g̃ε∥∞ ≤∥g0 − gε∥∞

+
M∑
i=1

qi∥D(·; ai,1,ε, . . . , ai,J,ε)−D(·; ν̃1(θi,ε), . . . , ν̃J(θi,ε))∥∞ ≤ ε.

Lemma 4. For every densities g1 and g2 in ∆J

KL(g1, g2) ≤
supz |g1(z)− g2(z)|2

infz g2(z)
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Proof. By Jensen inequality

KL(g1, g2) ≤ log

(∫
g21
g2

)
.

Now, since log(1 + x) ≤ x for every x > 0

log

(∫
g21
g2

)
= log

(∫ ((g1 − g2)
2

g2
+ 1
))

≤
∫

(g1 − g2)
2

g2
≤ supz |g1(z)− g2(z)|2

infz g2(z)

Proof of Proposition 2. We need to prove that, if h0 is a continuous density on ∆J , then, for

every η > 0, there is a density gη in M such that

KL(h0, gη) ≤ η.

Let hε(z) = max(ε, h0(z))C
−1
ε where Cε :=

∫
max(ε, h0(z))dz ≤ 1 + ε. Clearly hε > ε and

h0 ≤ Cεhε. Hence, by Lemma 5.1. in Ghoshal et al. (1999), for any density g

KL(h0, g) ≤ (2 + ε) log(1 + ε) + (1 + ε)[KL(hε, g) +
√
KL(hε, g)]. (B-7)

By Lemma 3 there is a density g̃ε in M such that ∥hε − g̃ε∥∞ ≤ ε/2. From the previous

inequality it follows that g̃ε ≥ hε − ε/2 ≥ ε/2. Hence, by Lemma 4

KL(hε, g̃ε) ≤ ε.

The thesis follows by taking η = (2 + ε) log(1 + ε) + (1 + ε)(ε+
√
ε) and gη = g̃ε.

D.D Proofs of Propositions 3 and 4

Proof of proposition 3. Note that

Fn+1(y) = E[F (y|θdn+1)|zi, i = 1 . . . , n]

which yields

E[F (y|θdn+1)|zi, i = 1 . . . , n] = E[E[F (y|θdn+1)|θdi , zi, i = 1 . . . , n]|zi, i = 1, . . . , n]

= E[E[F (y|θdn+1)|θdi , i = 1, . . . , n]|zi, i = 1, . . . , n]

By Proposition 1, θ̃i := θdi are drawn form a DP(ψ,G0), hence the predictive distribution

of θdn+1 given θdi , i = 1, . . . , n is

Gn+1(·) =
n

n+ ψ

n∑
i=1

δθdi
(dθ) +

ψ

n+ ψ
G0(·),
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see (??). Hence by the law of iterated expectations

E[F (y|θ)|θdi , i = 1 . . . , n] =

∫
F (y|θ)Gn+1(dθ)

=
n

n+ ψ

1

n

n∑
i=1

F (y|θdi) +
ψ

n+ ψ

∫
F (y|θ)G0(dθ)

Since

E
[ 1
n

n∑
i=1

F (y|θdi)|zi, i = 1, . . . , n
]
= F̄ (y)

we obtain the result

Fn+1(y) := P{Yn+1 ≤ y|zi, i = 1 . . . , n} =
n

n+ ψ
F̄ (y) +

ψ

n+ ψ

∫
F (y|θ)G0(dθ)

Proof of Proposition 4. Recall that posterior consistency yields predictive consistency, see

e.g. Theorem 4.2.1 in ? since ϕ(z) = zi is a bounded and continuous function on the simplex

the thesis follows.

D.E Proofs of Proposition 1

Proof of Proposition 1. Recall that since Zi,∞(dy) is a Dirichlet process with concentra-

tion parameter ϕi and base measure F (dy|θi), then for any finite partition B1, . . . , BJ of

R it follows that (Zi,∞(B1), . . . , Zi,∞(BJ)) has a Dirichlet distribution on ∆J of parame-

ters (ϕ(θi)F (B1|θi), . . . , ϕ(θi)F (BJ |θi). Hence, the random vector zi = (zi,1, . . . , zi,J) :=

(Zi,∞(y1)−Zi,∞(y0), . . . , Zi,∞(yJ)−Zi,∞(yJ−1)) has the Dirichlet distribution on the simplex

∆J of parameters (ϕ(θi)ν1(θi), . . . , ϕ(θi)νJ(θi)). When αj(·|ϵ) = 0 for j = 1, . . . , J , the

Bayesian model considered in Sections ?? is

(zi,1, . . . , zi,J) ∼ DirJ(ϕ(θi)ν1(θi), . . . , ϕ(θi)νJ(θi))

θi
i.i.d.∼ G

G ∼ DP(ψ,G0),

and the thesis follows.
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E Additional Results

E.A Survey design

Figure D-1: Bin Ranges

Output Growth Inflation
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Figure D-2: Number of respondents for H1 output growth surveys

Q1 Q2

Q3 Q4
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Figure D-3: SPF survey participation by respondent
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Figure D-4: Percentage of respondents for H2 output growth surveys placing positive

probability on either one open bin or both

Q1 Q2

Q3 Q4
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Figure D-5: Percentage of respondents for H2 inflation surveys placing positive probability

on either one open bin or both

Q1 Q2

Q3 Q4
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E.B Heterogeneity in subjective uncertainty

Figure D-6: Subjective uncertainty by individual respondent: Q1

H1Q1 H2Q1
Output Growth

Inflation

Note:
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Figure D-7: Subjective uncertainty by individual respondent: Q3

H1Q3 H2Q3
Output Growth

Inflation

Note:
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Figure D-8: Subjective uncertainty by individual respondent: Q4

H1Q4 H2Q4
Output Growth

Inflation

Note:
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Figure D-9: Subjective uncertainty by individual respondent: IQRs

H1Q2 H2Q2
Output Growth

Inflation

Note:
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Figure D-10: Subjective uncertainty by individual respondent: Beta

H1Q2 H2Q2
Output Growth

Inflation

Note:
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E.C Subjective uncertainty and forecast accuracy

Figure D-11: Subjective Uncertainty and Forecast Accuracy: Mean vs Point Predictions
Output Growth Inflation
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Figure D-12: Subjective Uncertainty and Forecast Accuracy: Different Samples
Output Growth Inflation

1982-2018

1992-2021

1992-2018
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Figure D-13: Subjective Uncertainty and Forecast Accuracy: Using Std2
Output Growth Inflation
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Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-

curacy? Additional Results (Unweighted)

Figure D-14: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects for both Mean and Point Forecasts
Output Growth Inflation

Time Fixed Effects

Forecaster Fixed Effects

Time and Forecaster Fixed Effects
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Figure D-15: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1982-2018 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-16: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1982-2018 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-17: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2021 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-18: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1992-2021 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-19: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2018 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects



Online appendix D-21

Figure D-20: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1992-2018 Sample
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-

curacy? Additional Results (Weighted)

Figure D-21: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Mean vs Point Projections–Weighted
Output Growth Inflation
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Figure D-22: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects–Weighted
Output Growth Inflation

Time Fixed Effects

Forecaster Fixed Effects

Time and Forecaster Fixed Effects
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Figure D-23: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects for both Mean and Point Forecasts–Weighted
Output Growth Inflation

Time Fixed Effects

Forecaster Fixed Effects

Time and Forecaster Fixed Effects
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Figure D-24: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1982-2018 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-25: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1982-2018 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-26: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2021 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-27: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1992-2021 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-28: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2018 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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Figure D-29: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1992-2018 Sample–Weighted
No Fixed Effects Time Fixed Effects

Forecaster Fixed Effects Time and Forecaster Fixed Effects
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