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noisy rational expectations hypothesis. We find that in contrast to theory for horizons
close to two years there is no relationship whatsoever between subjective uncertainty
and forecast accuracy for output growth density projections, both across forecasters
and over time, and only a mild relationship for inflation projections. As the horizons
shortens, the relationship becomes one-to-one, as the theory would predict.
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I Introduction

The pioneering work of Manski (2004) made economists appreciate the advantages of prob-
abilistic surveys relative to surveys that only ask respondents for their point projections:
probabilistic surveys simply provide a wealth of information that is not included in point
projections.’ As Potter (2016) writes, “in a world characterized by pervasive uncertainty,
density forecasts provide a comprehensive representation of respondents’ views about possi-
ble future outcomes for the variables of interest.” Given the respondents’ density forecasts,
the econometrician can compute numerous objects of interest, such as the mean, the median,

the variance, the skewness, the interquantile range, et cetera.

Except that survey respondents do not provide us with density forecasts. For most
surveys concerning continuous variables, they only provide the percent chance that the vari-
able of interest (e.g., inflation over the next year) would fall within different pre-specified
contiguous ranges or bins. That is, the information we have consists in the integral of the
forecast density over these bins, or equivalently, in a few points of the cumulative density
function (CDF). In order to extract most quantities of interest, standard practice consists
in postulating a parametric form for the forecast distribution and computing its parameters
by minimizing the distance between the observed CDF points and those implied by the as-
sumed distribution, which is often either a step-wise uniform (Zarnowitz and Lambros, 1987),
a Gaussian (Giordani and Soderlind, 2003), or a generalized Beta distribution (Engelberg et
al., 2009).2

In this paper we propose a Bayesian non-parametric approach for the estimation of
the survey respondents’ forecast densities.® The approach starts by making parametric as-
sumptions on the mapping between the predictive distribution of forecasters and the bin

probabilities they report, where this mapping explicitly allows for the introduction of noise

Tndeed, a number of recent surveys, including the Federal Reserve Bank of New York Survey of Consumer

Expectations, rely heavily on probabilistic questions.
2For a few quantities of interest, such as the median, one can compute non-parametric bounds as in

Engelberg et al. (2009), which depends on how one deals with reporting “noise” (e.g., rounding).
3In economics, the Bayesian non-parametric approach so far has applied to the analysis of treatment

effects (Chib and Hamilton, 2002), autoregressive panel data (Hirano, 2002; Gu and Koenker, 2017; Liu,
2021), stochastic production frontiers models (Griffin and Steel, 2004), unemployment duration (Burda et
al., 2015), and finance (Griffin, 2011, and Jensen and Maheu, 2010). Griffin et al. (2011) provide an intuitive
description of the approach and a survey of this literature up to 2011. Outside of economics, these methods
are widely used in biostatistics (Mitra and Miiller, 2015), machine learning (Blei et al., 2010, Hannah et al.,
2011), and psychology (Griffiths and Tenenbaum, 2006).



in the reporting (e.g., rounding toward zero). We then relax this parametric model by
embedding it into the more general Bayesian non-parametric approach, thereby amending
the potential misspecification associated with the parametric assumptions. This is because,
loosely speaking, Bayesian non parametric replaces any model with a potentially infinite mix-
ture of such models, attaining more flexibility while at the same time using the information
from the cross-section of forecasters to estimate the parameters of the mixture components.
Intuitively, each mixture component corresponds to a forecaster “type” (e.g., low/high vari-
ance; optimists/pessimists; low/high noise; et cetera, and combinations thereof). As long
as the number of types grows more slowly than the number of forecasters, there is enough

information to estimate the parameters corresponding to each type.

Our approach differs from existing methods in a few important dimensions. First, it
allows for full-fledged inference regarding the mapping between data and objects of interest,
in the sense that it generates a posterior probability for these objects. While current ap-
proaches provide point estimates for, say, measures of the scale of the predictive densities like
the variance, they do not provide any assessment of the uncertainty surrounding these esti-
mates, which is often large given the limited information provided by the survey responses.
Second, inference conducted using a specific parametric distribution can be naturally sensi-
tive to the choice of the distribution, or the choice of the mapping between the distribution
and the reported bin probabilities (the noise). The non-parametric nature of our approach
provides some robustness to misspecification regarding these parametric assumptions. Last,
our approach conducts inference jointly across survey respondents, that is, using the entire
cross-section instead of being applied to each respondent separately. As hinted above, this
joint inference allows for partial information pooling across forecasters thereby improving
the precision of the inference, making it possible to obtain some consistency results when

the number of forecasters grows to infinity.

We use this approach to address the question of whether US Survey of Professional Fore-
casters (SPF) density forecasts are consistent with the noisy rational expectations hypothesis
(see, for instance, Coibion and Gorodnichenko, 2012, 2015). According to this hypothesis,
forecasters receive both public and private signals about the state of the economy. The pre-
cision of forecasters’ signals, both public and private, ought to be reflected in equal measure
in their density forecasts and, under rational expectations, in their ex-post forecast accuracy,
both in the cross-section and over time. For example, if the economy becomes more uncertain
and the precision deteriorates, this should be reflected in both higher subjective uncertainty

and worse ex-post forecast errors. In fact, we find that for horizons close to two years there



is no relationship whatsoever between subjective uncertainty and ez-post forecast accuracy
for output growth density projections, and only a very mild relationship for inflation pro-
jections. As the horizons shortens, the relationship becomes one-to-one, in accordance with
the theory. These findings suggest that forecasters do not correctly anticipate periods of
macroeconomic uncertainty, except for very short horizons. Notably, this finding is robust

to the exclusion of the Covid period.

The outline of the paper is as follows. Section II presents the inference problem, briefly
describes current approaches, and formally discusses the Bayesian non-parametric approach.
Section III first provides a few examples of how our approach differs from current practice
and then discusses the relationship between subjective uncertainty and forecast accuracy.
Section IV concludes pointing out some of the limitations of the analysis and discussing

avenues for further research.

II Inference for Probabilistic Surveys

In this section we start by providing a short introduction to probabilistic survey data focusing
on those features that are relevant for this analysis, and in the process describe the SPF data
used in our application. Then we briefly discuss the approaches used so far for translating
the information provided by the respondents into forecast subjective distributions. The rest
of the section is devoted to the description of our Bayesian non-parametric approach to

inference.

II.A The inference problem and current approaches

Probabilistic forecasts such as those elicited by the Philadelphia Fed as part of the SPF take
the form of probabilities assigned to bins: the percent chance that the variable of interest,
such as inflation or GDP growth, falls within different contiguous ranges, where these ranges
are pre-specified by the survey designer (some recent surveys, such as the Atlanta Fed’s
Survey of Business Uncertainty, only specify the number of bins and let the respondents

determine their boundaries). For each forecaster i = 1,...,n the available data consists of
J

a vector of probabilities z; = (z;1,...,2;s), with z;; > 0 and sz = 1, measuring the
j=1
predictive likelihood that continuous variable y (e.g. inflation or GDP growth) falls within

the respective bin. The bins are mutually exclusive and contiguous, and generally cover the



Figure 1: Probability Forecasts for Selected Examples
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Note: Each panel displays the forecast probabilities z; j, j = 1,...,J (step-wise solid lines) for a given forecaster i (forecaster
number shown in parentheses) and the bin bounds (black ticks, horizontal axis).

entire real line. In what follows, we denote by (y;_1,v;], j = 1,...,J the bins and assume
that yo < y1 < ... < yy, where yo and y; are equal to —oo (left open bin) and +oo (right
open bin), respectively. Figure D-1 in the Appendix displays the evolution of the bin ranges
from the beginning of our sample, in 1982, until the end in 2021, for both output growth
and inflation, and shows that bins were changed in 1992, 2009, and 2020 for output growth
surveys, and in 1985, 1992, and 2014 for inflation surveys. The fact that the bin boundaries

change over time needs to be borne in mind when comparing surveys for different years.

The SPF is conducted at a quarterly frequency (answers are collected in the middle of
each quarter, right after GDP figures for the previous quarter have been released) and asks

about probabilistic predictions for current and the following year year-over-year growth rates



in real output (GDP) and the price level, as measured by the GDP deflator. Stark (2013)
discusses at length some of the features of the SPF survey, and the Philadelphia Fed’s site
provides a manual for interpreting the data that includes the history up to the present of

bin boundaries for the various variables being forecast.*

Figure 1 provides a few examples of survey responses that illustrate a number of common
features of the SPF data. The top two panels show the probabilistic forecasts for output
growth in 2020 made in 2019Q2 made by respondents 532 and 584, while the bottom two
panels show the forecasts for inflation in 2009 made in 2008Q4 by respondents 516 and 560.
The probabilities z;’s are displayed as histograms, while the black ticks on the horizontal

axis mark the boundaries of the bins.

The first feature that emerges from Figure 1 is that probabilistic forecasts are very het-
erogeneous. For each row the respondents are forecasting the same object, and yet their
probabilistic predictions are very different. Another feature is the fact that forecasters often
assign zero probability to some if not most bins. Forecaster 532 for instance places zero
probability on output growth being between -1 and 1 percent, but positive probability on
output being between -2 and -1 percent, and between 1 and 3 percent. Should the econo-
metrician interpret this information literally, or as an indication that this respondent has a
bimodal forecast distribution with some probability on a recession, and a larger probability
on an expansion, with very small but not literally zero likelihood of in-between outcomes?
Other forecasters, such as respondent 584, place positive mass on almost all bins, however.
A third feature of the data is that almost all probabilities in Figure 1 are round numbers,
with responses for forecaster 584 being again the only exception. Fourth, forecasters do
place mass on open bins and sometimes, as is the case for respondent who in 2008 was
fearing deflation in 2009, most of the mass. Figures D-4 and D-5 in the Appendix show
for each output growth and inflation survey the percentage of respondents placing positive
probability on either one open bin or both. These percentages are as high as 70 for output
and 90 percent for inflation before 1992, when the bins were changed, but are on average

about 20 percent, with peaks of 40 percent or higher, even after 1992. Finally, many of these

4Figure D-2 in the Appendix displays the number of respondents n for output growth surveys conducted
in Q1, Q2, Q3, and Q4 of each year (the numbers for inflation are essentially the same). The number of
respondents is about 35 in the early 1980s, and then drops steadily over time until 1992 when the Philadelphia
Fed begins to manage the survey; n hovers around 35 until the mid-2000s and then starts to increase reaching
a peak of about 50 during the Great Recession; it declines steadily thereafter and is about 30 in 2021. Figure

D-3 shows survey participation by respondent, and provides a visual description of the panel’s composition.



predictive densities appear asymmetric. These examples display a left skew for output and,

at least for forecaster 560, a right skew for inflation.

The econometrician’s problem is to use the information given by the elements of the
survey probability vector z; of the i-th forecaster to address a number of questions of interest:
What is the mean prediction for forecaster 7 How uncertain are they? Is there skew in their
predictive densities? The general approach for macroeconomic surveys has been to postulate
that forecasters i = 1,...,n have in mind a given predictive probability distribution Fj(y)
over the variable being forecast, which they use to assign the bin probabilities z;. The
task of the econometrician is then to infer the underlying F;(y) based on the data z;, and
then use the estimated Fj(y) to answer the questions of interest. To our knowledge, most
existing literature has accomplished this task by fitting a given parametric distribution to
the Cumulative Distribution Function (CDF') implied by the bin probabilities, respondent by
respondent, that is fitting Z;; = z;1 +---+ 2, j=1,...,J,1=1,...,n using a parametric
family of distributions {F(y|@) : @ € ©}. The type of the parametric distribution varies
across studies, from a mixture of uniforms/piece-wise linear CDF (that is, assuming that
the probability is uniformly distributed within each bin; Zarnowitz and Lambros, 1987), to a
Gaussian (Giordani and Soderlind, 2003), a skew-normal (Garcia and Manzanares, 2007), a
generalized beta (Engelberg et al., 2009)° and a skew-t distribution (e.g., Ganics et al., 2020).
The Gaussian and the generalized beta assumptions have been the most popular approaches
in academic research, although in applied work at central banks the mixture of uniforms
approach is often followed. The parameters of each distribution are usually estimated using

nonlinear least squares, respondent by respondent; that is, F;(y) = F (y]éz), where

2

Zi; — F(y;0;)] - (1)

J
0, = argmin E
0,

These approaches have been popular but have some limitations. A first limitation is that
the assumed parametric distribution may be misspecified, in the sense that it may not fit the
individual responses well. Relatedly, the width of the bins can be large, as is obviously the
case when the respondent places probability on open bins (interior real output growth bins
after 2020 are also very wide). This implies that even if the distributions fit the Z;;’s, the
inference results on moments and quantiles can be sensitive to the distributional assumption.

A second issue is that bounded distributions such as the beta or the mixture of uniforms

®Whenever the number of (adjacent) bins with positive probability is two or fewer, Engelberg et al. (2009)

uses a triangular distribution.



take literally the z;; that are zero, in that they place no probability mass on bins where the
respondents place no mass. More in general, for all assumed F(-)’s the approach outlined
in expression (1) ignores the issue of rounding, in that it takes all the Z;;’s literally even
though the respondent may be reporting approximate probabilities (Dominitz and Manski,
1996; D’Amico and Orphanides, 2008; Boero et al., 2008a, 2014; Engelberg et al., 2009;
Manski and Molinari, 2010; Manski, 2011; Giustinelli et al., 2020, among others, discuss
the issue of rounding; Binder, 2017 uses rounding to measure uncertainty).’ Finally, almost
all existing approaches ignore inference uncertainty, even that concerning 6; for a given
parametric assumption, let alone the uncertainty about the shape of Fj(-). This omission
implies that confidence bands and hypothesis testing procedures cannot be derived.” These
limitations are well known in the literature (see Clements et al., forthcoming). There have
been attempts to address some of these issues, in particular the potential misspecification, by
choosing more flexible families of distributions such as the skew-normal or the skew-Student-
t distribution (e.g., Garcia and Manzanares, 2007; Ganics et al., 2020). But the possibility
of misspecification remains. Most importantly, if the econometrician does not account for

inference uncertainty, this flexibility comes at the price of overparamterization.

In the following two sections, we propose a Bayesian model that attempts to overcome
some of these limitations. We first introduce a parametric model for the forecaster distri-
bution. This model follows the literature in that it assumes that each forecasters has in
mind a specific predictive distribution F'(-) which he uses to assign probabilities v to the
bins. It is different from the literature in that it explicitly postulates that the data z are
noisy versions of the v’s, where the noise is assumed to follow a parametric distribution. We
then depart from this parametric framework by embedding it into a more general Bayesian
non-parametric model, which assumes the parameters of the forecasters in the cross-section

are drawn form an infinite mixture prior. The combination of different parameter draws

®Manski and Molinari (2010) and Giustinelli et al. (2020) propose to treat the issue of rounding by
considering interval data and using a person’s response pattern across different questions to infer her or his
rounding practice. It is important to note that the inferential approach based on interval data followed by

these researchers is very different from the one described at the beginning of this section.
"Researchers recognize the emergence of an inference issue especially when the information provided by the

respondent is very limited, but the proposed solution mostly amounts to either choosing less parameterized
distributions or discarding the respondent. For instance, some researchers simply discard histograms with
fewer than three bins Clements (2010), others (Engelberg et al., 2009; Clements, 2014b,a; Clements and
Galvao, 2017) use a triangle distribution in these cases, as mentioned above. Liu and Sheng (2019), however,
make an attempt to account for parameter uncertainty for given parametric assumptions. They propose

maximum likelihood estimation of parametric distributions on artificial data generated from the histogram.



accomodates different shapes of the predictive distribution and is flexible enough to approx-
imate a wide range of densities. The model flexibility potentially amends misspecification
associated with the parametric assumptions; it accounts for forecaster heterogeneity; and it

allows for some degree of information sharing in the cross-section when making inference.

II.B A parametric probabilistic model

We assume that the probability vector z; reported by a forecaster is a noise-ridden measure-
ments of an unobserved vector of subjective probabilities over the J bins v; = (v41, ..., Vi),
with v;; > 0 and v, + ...+ vy = 1 (Boero et al., 2008b, discuss the issue of noise). If each
forecaster has a subjective probability distribution F;(-) over the variable being forecast

(y € Y C R), which they use to compute the bin probabilities v;;, then

where 0; € © includes the parameters describing the CDF F;(-) = F(-|0;). For concreteness,
in our application the subjective distribution F'(-|@) is a mixture of two Gaussian distribu-

tions, that is
F(yl0) = (1 —w)®(ylu, 07) +wd(ylu + ps, 03),
but the general approach accommodates many other choices for F'(-|8).

The uncertainty in z; is encoded into a probability distribution A(-), that is
ind
Z;, = (Zi,la . ,Zi}(]) ~ h(ZZ|02), (3)

which captures the noise due to approximations or to actual mistakes in reporting. In
choosing the random histogram distribution h(-), one needs to account for the fact that
z; belongs to the simplex; that is, the elements of z; are positive and sum up to one. A
convenient choice for the distribution h(:) is the standard Dirichlet distribution which is
defined on the simplex. A drawback of this distribution is that its PDF is null for z;’s that
have some elements equal to zero, when in fact forecasters often assign zero probability to
one or more bins. To specify h, we follow Zadora et al. (2010) and Scealy and Welsh (2011)
and use a distribution which allows for values of the random vector on the boundary of
the simplex. This distribution can be described in term of the augmented representation
(z;€) = (z1,...,27;&,...,&s) where the indicator variables &; is 0 if and only if z; = 0

and §; = 1 otherwise. We impose that { + ...+ &; < J to rule out the event all reported
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probabilities are zero. The joint distribution of z = (21,...,25) and &€ = (&,...,&;) is a

zero-augmented Dirichlet distribution with probability density function

J
1
h(z. £6) =—0H 0)% (1 — ;(8))'"“h(2]6,), (4)
where 6 is a parameter, a(0) = («1(0),...,a;(0)) are the probabilities that a forecaster
will report a zero probability on the J bins, ¢(0) = 1 — (ay - ... - a;(0)) is a normalizing

constant, and h(z|0, &) is the standard Dirichlet distribution defined on the elements of z

that are non zero:

D (5,0 0(0),(0))) ] - (5)
[jeg- T(9(0)1(6))

JjeET*

h(z|6,€) =

where J* = J*(§) = {j = 1,...,J;§; = 0} is the set indexes of the non-zeros elements

of z, ¢(0)k is the rescaled precision, with k = Z v;(0), and v;(0)/k for j € J* are the
JET*
renormalized v(@)’s, which take into account the fact that if a forecaster decides to report

zero probability for one or more bins, they need to adjust the probabilities associated with
the other bins so that they still sum up to one.® The distribution used in (3) is the marginal

distribution of z implied by expression (5),

= N(z¢|6)

fex

where X is the set of all vectors with 0-1 binary entries of length J which are not all zeros,
e X ={&=(&,...,&) €{0,1}, st.& +... +& < T}

The probability o of reporting zero mass is modeled as a;(0) = a(v;(0), €(0)) where the
function «(v, €) is decreasing in v such that @« — 1 for v — 0 and a — 0 for v — 1. ¢(0)

measures the sensitivity of a;(0) to v (that is, « — 1 for e = 0 and o — 0 for ¢ — 0). In

8Note that the conditional Dirichlet satisfies some relevant properties of the unconditional Dirichlet, that

are the elements of z and their marginal conditional means

oV v ,
E(z]€) = = L JET” (6)
’ Zjej* Pv; E]‘ej* vj
sum up to one, and their marginal conditional variances
vi(k — v . N
Visle) = 528 ey %

K> (¢ Zjej* vj+1)

go to zero with ¢ — oc.
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practice, the probabilities o are parameterized as:

€(0)
0;(6) = / Be(z|;(6), r)dx ®)

j=1,...,J, where Be(x|m,r) denotes the pdf of a beta distribution Be(m,r) with mean m
and precision r parameters. We assume r is fixed at 100 and €(@) = e. The parameter vector

of h(z,£|0) in the new parametrization is @ = (u, s, 01, 02, w, ¢, €), where we set () = ¢.

Some of the parametric assumptions outlined above are less palatable than others. For
instance, the assumption that “noise” around the non-zero z; ;’s takes the form of a Dirichlet
distribution is at odds with the observation on the prevalence of rounding. And even when
the parametric assumption may be more palatable (e.g, the F'(+-|@), or the a(-|@)), it can still
be wrong. Embedding these parametric assumptions into a mode general non parametric
model arguably protects us, at least to some extent, from misspecification. We describe this

approach in the next section.

II.C A Bayesian non-parametric model

The Bayesian non-parametric hierarchical model works as follows. We assume that the
distribution generating the z; has a respondent-specific parameter ; and the parameters 6;,
i=1,..., N are sampled from a mixture of forecaster “types” (for concreteness, let us think
of low versus high uncertainty; low versus high mean; left versus right-skewed; low versus
high reporting noise; a combination of all the above, et cetera). For now imagine that the
number of types K is finite. At the first stage of the hierarchy of distributions the parameter

0, of i-th forecaster is distributed according to
07 with probability w,
0; & : (9)
05 with probability wx
with w, > 0 and w; + ...+ wg = 1. At the second stage of the hierarchy, it is assumed

that the unknown parameter types are sampled from a common distribution 6}, w Go(0),

k=1,..., K, and that the type probabilities have prior distribution

. (%o Yo
o wg)~D (——) 10
(wi, .. wic) ~ Dir{ 72 I (10)
where 1)y is a concentration parameter and Dir(ay, ..., ax) a Dirichlet distribution of pa-

rameters (ay,...,ak).
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Now let the number of types K go to infinity. When this happens, we obtain the discrete

random measure -
G(0) =) wid(0 — 6;) (11)
k=1

where d(z) denotes a point mass distribution located at 0, the so-called “atoms” 6, are i.i.d.
random variables from the base measure Gy, and the random weights wy are generated by
the stick-breaking representation SB(1)) given by

k—1

Wi = Vg H(l — Ul) (12)

=1
where the stick-breaking components v; are i.i.d. random variables from a Beta distribution
Be(1,1y) (e.g., see Pitman, 2006). Following Sethuraman (1994), the random measure G is
a Dirichlet process DP (1, Go) (Ferguson, 1973) and our hierarchical model is a Dirichlet
process prior:

itd

0, Y G, G~ DP(,Gy).

The base measure G has the interpretation of mean type distribution, and the precision
parameter Yy measures the concentration of G around Gy, so that when ¢y — +oo all
forecasters are assumed to be of the same type and when 1y — 0 the inference is done
forecaster by forecaster (using the same prior). See Ghosh and Ramamoorthi (2003) for an
introduction to Dirichlet process priors and Hjort et al. (2010) for a review on the state-of-

the-art practice of Bayesian non-parametrics.

Sethuraman (1994)’s constructive representation, in addition to being computationally
convenient as discussed in the next section, implies that our model has the infinite mixture

representation
halz) = [ h(el6)G(d8) = 3 wih(al6n (13)
k=1

where the weights wj, come from the same prior distribution (12) for all forecasters. This
representation indicates that the Bayesian non-parametric model is flexible and, as such, can
overcome the inherent misspecification implied by the use of a specific parametric assump-

tions.

In conclusion, in our Bayesian non-parametric model each forecaster is described by
a prior distribution over a very rich parameter space. At the same time, Bayesian non-
parametrics allows for some degree of pooling: the approach allocates forecasters whose
predictive distributions are similar to one another into groups and allows the number of

groups to grow naturally as more data becomes available. This pooling mitigates overfitting.
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II.D Posterior inference

The Dirichlet process G generates a priori dependence among the forecaster-specific param-
eters 6;’s via the formation of clusters of forecasters of the same type. The relationship
between 6; and the mixture components 8, is encoded by the auxiliary indicator variables
d;’s, which are equal to k if 0; is from the k' mixture component, that is 0; = Bfli.g The
allocation variables d; (i = 1,...,n) are then used to construct the posterior estimate of the

forecaster-specific subjective probability:

[e.e]

Fi(y) = E[Fl0;)|21n, &) =E | > F(yl0;)I{d; = k}

k=1

Zlﬂa&ln] . (14)

Monte Carlo sampling can be used to approximate the posterior distribution and the
quantities of interest such as subjective probabilities, point estimates and posterior credible
intervals. Building on Walker (2007) and Kalli et al. (2011), we use a slice sampling algo-
rithm which generates random draws from the posterior distribution of 8; for i = 1,....n
(Appendix B provides the details of the Gibbs sampler). The output of the Gibbs sampler

can be used to approximate Eq. 14 as follows

M oo

By) = 52 30 S Flef ™)™ = k) (15)

m=1 k=1

where dgm), Oz(m), m=1,..., M are the MCMC samples for the infinite mixture atoms and
allocation variables.
II.E Posterior consistency

In this section, we also discuss asymptotic properties of the posterior distribution as the

number of forecasters goes to infinity.

9As shown in Escobar and West (1995), the predictive distribution of ,,,; conditional on (6,...,8,)

can be represented as a Polya’s urn process

wfinGo( nt1) 1/) n Z(s —6,11)

0n+1‘017--~79n ~

With probability ” 1/)40_ the new draw 6,11 is generated from Gy, but it is otherwise equal to one of the
0 n
previous n draws. In fact, the n forecasters’ distribution can be characterized using N different clusters,

Yo +n

where N is a random variable with prior mean E[N] = tglog( ). When 9y — 0o we have the same

parametric model for each forecaster: z; ~ h(-|@;) where the 8,’s are drawn independently from Gy.
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We formalize convergence with respect the number of observations via weak consistency
of the posterior distribution (see, e.g. Ghosh and Ramamoorthi, 2003), which provides a
widely accepted minimal requirement for large sample behavior of Bayesian non-parametric
models (see, e.g. Norets and Pelenis, 2012; Pelenis, 2014; Norets and Pelenis, 2014; Bassetti
et al., 2018).

Roughly speaking, posterior consistency means that in a frequentist experiment with a
given data generating density, the posterior distribution concentrates around this density as
the sample size (number of forecasters) increases. More formally, let H is the set of all possible
data generating densities (with respect to a dominating measure) on the sample space Z C
R’. Given a prior IT on H, the posterior is said to be weakly consistent at hy if for every i.i.d.
sequence z,Zs, ... of random variables with common density hy the posterior probability
I(U|zy,...,z,) converges a.s. to 1 as n — 4oo for every weak neighbourhood U of hy.
For some background material on posterior consistency, see e.g. Ghosh and Ramamoorthi
(2003).

In our setting, the prior IT on #H is a type I mixture prior (see Wu and Ghosal (2009a))
induced by the map G — hg(z) = / h(z|0)G(d@) where O is the mixing parameter space,

©
and G has a Dirichlet process prior DP(1g, Gy), where Gy is a base measure on © and )y

the concentration parameter.

To prove weak consistency for our model, we use Schwartz theorem (see e.g. Chapter
4 in Ghosh and Ramamoorthi (2003)). This result states that weak consistency at a “true
density” hg holds if the prior assigns positive probabilities to Kullback-Leibler neighborhoods
of hy. We state here only one main result on consistency, all the details, proofs and some

additional results are available in Section D of the Appendix.

If the probability of zero bins is positive, H includes also distribution h with assigns posi-
tive mass to sub-symplex of lower dimension of the J-dimensional simplex A7 = {(zy,...,2;_1) :
21+ -+ 2721 <1, 0 < z; < 1}. In this case Z can be seen as the augmented space of
the possible values of (z, &) and we need to properly generalize the definition of Kullback-
Leibler divergence to mixed densities. Let z¢ = [z; : j € J"(£€)] and observe that, given &,
z¢ takes values in the open J — |€|-dimensional simplex A'7IE where €] = & + - + &5
On the sample space Z, given by all the pairs (§,2), one can thus define a o-finte measure
Nd€dz) = c(d§) ® Le¢(dze) where ¢ is the counting measure on X" and, given &, L¢ is the

Lebesgue measure on A7l
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The set of all possible data generating densities H is the set of all the densities with
respect to A\. These densities g factorize as g(€,z) = g(§)g(z¢|§), where z¢ = [2; : j € T*(€)].

Given two densities hg and g in H the Kullback-Leibler divergence between hy and g¢ is

then defined as

KL(ho,g) = /Zho(ﬁ,z) log (f;o((g,zz))

Some more details on K L(hg, g) are given in Section D of the Appendix.

)A(dgdz). (16)

We define M™ as the set of finite mixtures of densities (4), and denote by H; the set of

densities that can be approximated in the Kullback-Leibler sense by densities in M™, i.e.
Hy = {ho density w.r.t. A: Ve >03g € M s.t. KL(ho,g9) <¢e }.

Theorem 1. Assume that 0 — (a1(0),...,a;(0),(0)11(0),...,0(0)r,;(0)) is a continuous
function such that v;(0) > 0 and 0 < «;(0) < 1 forevery j =1,...,J. If Gy has full support,

then the posterior is weakly consistent at any density o in H; such that

> hoté) [,

gex

log H 2; || ho(z¢|€)dze < +o0. (17)

el jeT(€)

In the result given above, the number of bins is finite. Additional asymptotic results are
obtained when the number of bins J goes to infinity, the bin size goes to zero and the rounding
disappears. First, for n fixed, we proved that the random histogram model z; converges to
an infinite dimensional model where each forecaster’s response is modelled by a (random)
CDF with mean F'(-|@;). This infinite dimensional prior model gives positive probability
to any (weak) neighbourhood of any distribution defined on the support set of F(:0;).
See Theorem 2 and Corollary 1 in Appendix C. Moreover, under suitable assumptions, as
the number of forecasters and the number of bins go to infinity the posterior consensus
distribution converges to the true consensus CDF of the forecasters, see Proposition 5 in

Appendix C.

In the applications, the choice of the probabilistic model, in particular of the distribution
family F'(-|@;), and of the prior distribution can have an impact on the results given that
n is far from infinity (around 30 for the SPF) and the number of bins J is small (e.g.,
J = 10 in the US SPF on GDP in 2020). When the number of bins decreases and/or
the bin width increases, the amount of information available to reconstruct the subjective
CDF diminishes, and model assumptions can have a more significant impact on the empirical

results. An advantage of the Bayesian approach is that it accounts for the lack of information
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returning wider credible intervals. In general, the approach provides a measure of the level
of estimation uncertainty for all objects of interest. Nevertheless, a robustness check with
respect to the specification of the prior distribution and the distribution family should be

considered in all applications of this method.

II.LF Prior parameters specification

In the following we discuss the prior setting used in the real data application. The parametric
family chosen for the subjective CDF is F(y|0) = (1 —w)®(y|u, 07) +w®(y|u+ ps, 03) where
0 = (i, ps,01,09,w, ¢, €). The parameters € and ¢ are used to specify h and « in (5) and
(8), respectively.

The base measure G of the DPP is given by the product of the following distributions.
The location of the first mixture component is g ~ MN'(2,5%). Note that the standard
deviation is 5, so this is a very loose prior. The scales of the mixture components follow
o; ~ IGa(ay,bs)L(01)0,10), J = 1,2 where a,,b, are chosen s.t. the standard deviation
has mean E|o;] = 2 and a variance V[oy] = 4. We truncate the distribution at 10 for
numerical reasons. The parameters us captures the deviation of the mean of the second
mixture component relative to the first one. Its prior is centered at zero (implying that
the second mixture a priori mainly captures fat tails) and has a standard deviation of 1:
s ~ N(0,1%). Finally, the prior for w, the weight on the second component of the mixture,
is w~ B(0.5,3). Its mode is zero, implying that the prior favors models with one mixture

only. The prior places roughly 20 percent probability on {w > 0.25}.

As regards the prior for the rounding-off parameter ¢ we assume a Ga(ac, b.) and set a,
be such that o is close to one for v; less than 1%, very small for any v; larger than 5%, and

virtually zero when v; is larger than 10%."°

For the precision parameter of the random histogram, ¢, we assume a Ga(ay, b,) where
as and b, are s.t. E[¢] = 100, V[¢] = 100. The left panel of Figure 2 shows the 50 and 90
percent bands for the noise associated with three different values of v: 0.1, 0.6 and 0.3. The
right panel of Figure 2 shows the mean and the 90% coverage intervals of a;(8) as a function

of v;(0). The probability of reporting zero becomes non negligible only for v < 0.04%.

OWe chose the beta distribution because it is the marginal of a Dirichlet, but we could have chosen
any other distribution satisfying the above requirements. Our parametrization of the beta distribution is

Be(z|v,r) = mx’”_l(l — )71 with & € (0,1), m € (0,1) and precision r > 0.
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Figure 2: Noise and zero probability
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As regards the concentration hyperparameter 1y of the Bayesian non-parametric prior,
which determines the prior number of clusters, we follow the standard choice and set ¢y = 1.
This implies that the expected number of clusters for a cross-section of 30 survey respondents

is roughly 4.

III Results

In this section we first discuss the application of the non-parametric Bayesian approach to
the few selected examples mentioned at the beginning of Section II, so that the reader be-
comes familiar with how the approach works in practice. Next, we document the evolution
from 1982 to 2021 of individual measures of uncertainty obtained using our approach. This
analysis sets the stage for the analysis in the next section, where we study the relation-
ship between subjective uncertainty and ex-post forecast errors, and assess whether SPF

predictive densities conform with the noisy rational expectations hypothesis.

III.A Examples

In this section we provide posterior estimates of the subjective predictive distributions F'(y|6;)

obtained with our approach for the examples discussed in section II.A, and compare these



Figure 3: Inference Using Bayesian Non-parametric Approach: CDFs and PDF's for
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Note: In each panel: the subjective CDFs (top panels) and selected quantiles (bottom panels). Top panels: subjective CDF
using least-squares approach with normal (gray, dashed line) or beta (black, dash-and-dotted line) assumption; subjective CDF
using BNP approach (posterior random draws in light gray); and observed cumulated histogram probabilities Z;; j = 1,...,J

(crosses).
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estimates with the results obtained under some of the approaches currently used in the

literature.

Figure 3 shows the inference results for the four SPF respondents shown in Figure 1.
For each forecaster we show posterior draws (thin gray lines) from the BNP model for
the subjective CDF (top) and PDF (bottom), and compare it with the results under the
generalized beta (black, dash-and-dotted) and Gaussian (black, dotted) approaches. The
CDF plots also show the observed cumulative probabilities Z;; (crosses), while the PDF
plots show the step-wise uniform PDF (gray dotted lines) obtained from step-wise uniform

PDF (gray dashed lines) implied by the histogram probabilities z;;.

Figure 3 is helpful in illustrating a few points about the Bayesian non-parametric ap-
proach. First, the observed cumulative probabilities (the Z;;’s; crosses) belongs to the high
posterior density region for all these respondents. This suggest that our approach is flexible
enough to capture a variety of arguably challenging cases. Bassetti et al. (forthcoming) pro-
vide several other examples obtained during the recent Covid episode which confirms this
impression. In contrast, the beta and the normal approaches do not fit the Z;;’s well in
these examples, with the exception of respondent (584), and their CDFs and PDFs do not
belong to the high posterior density region obtained from the BNP approach. This implies
that there can be important differences in the objects of interests, such as the measure of
uncertainty, or quantiles, implied by the different approaches. Bassetti et al. (forthcoming)

again discuss some of these differences during the Covid period.

Figure 3 also shows that whenever there is less information from the respondent, the
BNP approach delivers wider posterior coverage intervals that reflect this higher degree of
uncertainty. The case of respondent 516 is exemplary. This respondent places 80 percent
probability on the left open bin (see Figure 1), implying that we know very little about the
left-tail behavior of this forecaster. The posterior coverage intervals for both the BNP CDF
and PDF reflect this uncertainty, as evidenced by the fact that the gray lines for both the
CDF and the PDF are far less concentrated for forecaster 576 in the left tail than in other

regions or for other forecasters.

III.B Heterogeneity in subjective uncertainty

Heterogeneity in macroeconomic probabilistic forecasts was noted a long time ago. While

much of the early literature focused on disagreement in point projections or central ten-
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Figure 4: Subjective uncertainty by individual respondent-Output Growth
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Figure 5: Subjective uncertainty by individual respondent-Inflation
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Figure 6: Cross-sectional standard deviation of individual uncertainty
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dencies,'! more recent work documents the fact that forecasters disagree about uncertainty.
Lahiri and Liu (2006) and D’Amico and Orphanides (2008) are to our knowledge some of
the first papers to highlight heterogeneity in individual uncertainty, and do so in the context
of SPF predictions for inflation.'> A number of articles also provide evidence of persistent
differences in subjective uncertainty. Bruine De Bruin et al. (2011) for instance measure in-
dividual uncertainty for consumers’ density forecasts using the interquartile range obtained
by fitting a beta distribution to each forecaster and find that heterogeneity in perceived
uncertainty is significant and persistent, as it appears to be associated with demographic
characteristics and financial literacy. Boero et al. (2014) and Rich and Tracy (2021), using
the Bank of England Survey of External Forecasters and the FEuropean SPF, respectively,
also find that relative differences in uncertainty are long lasting, and interpret this fact as
suggesting that the degree of uncertainty is a forecaster-specific characteristic akin to the

individual optimism and pessimism established in the literature on point forecasts.

In this section we document the evolution of individual measures of uncertainty obtained
using our approach in our 1982-2021 sample. We do for two reasons. First, we set the stage
for the analysis in the next section, where we study the relationship between subjective un-
certainty and ex-post forecast errors. In particular, we follow the aforementioned literature

and show that professional forecasters differ significantly in terms assessment of uncertainty,

Gee Mankiw et al., 2003; Carroll, 2003; Capistran and Timmermann, 2009; Patton and Timmermann,
2010, 2011; Andrade and Le Bihan, 2013; Andrade et al., 2016 and other work mentioned in the excellent
recent survey by Clements et al. (forthcoming). Following Zarnowitz and Lambros (1987), a large literature
has also investigated the question of whether disagreement and the average dispersion of density forecasts
(average uncertainty) move together (see Giordani and Soderlind, 2003; Lahiri et al., 1988; Rich and Tracy,
2010; Lahiri and Sheng, 2010; Abel et al., 2016, and Rich and Tracy, 2021, among many others; Kozeniauskas
et al., 2018 provide a clear discussion of the conceptual differences between macroeconomic uncertainty and
disagreement using a model where forecasters have private information and update their beliefs using Bayes’

law).
2Lahiri and Liu (2006) plot the evolution over time of the distribution of individual measures of uncer-

tainty (which they obtain by fitting a Gaussian CDF to for each forecaster’s histogram), and show that the
persistence in uncertainty is much less than what the aggregate time series data would suggest. D’Amico
and Orphanides (2008) fit a Gamma distribution to the cross-sectional CDF of individual variances, which
they also obtain under the Normal parametric assumption, and then use the variance of this Gamma to

measure disagreement about uncertainty and its evolution over time.
3Rich and Tracy (2021) propose the Wasserstein distance as a way of directly measuring heterogeneity in

predictive densities, and in computing this distance assume that individual PDFs are step-wise Uniform dis-
tributions in computing the distance. Relatedly, Clements (2014b) and Manzan (2021) discuss the updating

of density forecasts and in particular uncertainty in light of new information.
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and that these differences vary over time. We also show and that while these differences
are persistent, forecasters do change their mind from period to period about their subjec-
tive uncertainty—a variation that we will exploit later. Second, we take advantage of our

inference-based approach and test the extent to which these differences are significant.

Figures 4 and 5 show the evolution of subjective uncertainty by individual respondent for
output growth and inflation, respectively. The top and bottom panels display uncertainty
for the current and the next year projections, respectively, made in the second quarter
(the Appendix shows that results for other quarters are qualitatively similar). In each
panel the crosses indicate the posterior mean of the standard deviation of the individual
predictive distribution. We use the standard deviation (as opposed to the variance) because
its units are easily grasped quantitatively and are comparable with alternative measures
of uncertainty such as the interquartile range. Thin gray lines connect the crosses across
periods when the respondent is the same, providing information on both whether respondents
change their view on uncertainty and whether the composition of the panel affects the cross-
sectional average measure of uncertainty, which is shown by a black dashed line (Manski,
2018, stresses the extent to which the literature has often ignored compositional changes
when discussing the evolution of consensus or average measures). 6 provides a time series
of the differences in individual uncertainty, as measured by the cross-sectional standard
deviation of the individual standard deviations. The solid black line displays the posterior

mean of this measure, while the shaded areas represent the 90 percent posterior coverage.

Figure 4 shows that on average uncertainty for current year (top panel) output growth
projections declined from the 1980s to the early 1990s, likely reflecting a gradual learning
about the Great Moderation, and then remained fairly constant up to 2020 when the Covid
pandemic struck, and average uncertainty grew threefold. Average uncertainty for next year
(bottom panel) projections tends to be in general higher than for current year projections.
It follows a similar pattern, except that it displays a small but very steady upward shift in
the aftermath of the Great Recession. It appears unlikely that changes in survey design,
and particularly in the bins, affect these patterns: for output growth these changes take
place in 1992, 2009, and 2020. Except for 2020, where much of the change in uncertainty is
arguably attributed to Covid, there are no evident breaks associated with the bin changes.
Interestingly, we do not see any upticks in average subjective uncertainty in the run up to
recessions, even for current year forecasts, with the exception of the Covid crisis. Using the
interquantile range to measure uncertainty, as done in Figure D-9 in the Appendix, leads to

very similar results. Using the generalized beta approach to fit histograms (see Figure D-10)
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also produces similar overall patterns, although perhaps not surprisingly this approach leads

to lower estimates of subjective uncertainty relative to our approach.

Cross-sectional differences in individual uncertainty are very large, and quantitatively
trump any time variation in average uncertainty. The standard deviation of low uncertainty
individuals remains below 1 throughout the sample, with the sole exception of the Covid
period, while that of high uncertainty individuals is often higher than two. More formally,
the cross-sectional standard deviation of individual standard deviations, shown in Figure 6,
hovers between 0.4 and 0.8 throughout the sample, and then jumps during the Covid period.
The cross-sectional standard deviation is quite tightly estimated indicating that differences
across individuals are significant. The level and the dispersion of uncertainty appear to
be tightly linked, in that the cross-sectional standard deviation is high when the average
is high. Looking at Figure 4 this seems due to the fact that it is mostly high uncertainty
respondents who change their mind about the confidence in their projections, thereby driving
both the average and the cross-sectional standard deviations. Relatedly, while differences in
subjective uncertainty are persistent, forecasters do change their mind from period to period
about their subjective uncertainty, and their relative ranking varies as indicated by the fact

that the thing gray lines very often cross one another.

Figure 5 shows that on average subjective uncertainty for inflation in both for current
(top) and following (bottom) year declined from the 1980s to the mid-1990s and then was
roughly flat up until the mid-2000s. Average uncertainty rose in the years surrounding the
Great Recession, but then declined again quite steadily starting in 2021 and reached a lower
plateau since the mid 2010s. Interestingly, average uncertainty did not really rise much in
2020 and 2021 in spite of the Covid related disturbances, and in spite of the fact that for most
respondents expected inflation rose sharply, as documented in Bassetti et al. (forthcoming).
In the case of inflation changes in the bins, which took place in 1985, 1992, and 2014 (see
Figure D-1 in the Appendix), may have payed some role as we see that the average standard
deviation drops markedly in both 1992 and 2014. At the same time it is arguably not the
only explanation since such drops appear to be the continuation of a trend that had started

earlier when survey design had not yet changed.

As was the case for output growth, also for inflation cross-sectional differences in in-
dividual uncertainty are very large. The cross-sectional standard deviation of individual
standard deviations (Figure 6) follows the same pattern of the average standard deviation:

it starts around 0.6 percent in the 1980s, drops to around 0.4 percent in the 1990s, and then
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drops a bit further in the 2010s. This measure of cross-sectional heterogeneity in uncer-
tainty is somewhat tightly estimated, and these level shifts, especially that from the 1980s
to the mid-1990s, appear to be statistically significant. As was the case for output, high
uncertainty respondents becoming less uncertain are mostly driving both the average and

the cross-sectional standard deviations.

III.C Subjective uncertainty and forecast accuracy: Testing the

noisy information hypothesis using density forecasts

Is there a correspondence between forecast errors and subjective uncertainty? The answer to
this question is interesting in itself, as it sheds light on the relationship between the ez-ante
uncertainty expressed by survey respondents and their ez-post ability to predict macroe-
conomic outcomes. It is also of interest because it represents a test of the noisy rational
expectations hypothesis (see Coibion and Gorodnichenko, 2012, 2015, for instance). Accord-
ing to this model, forecasters receive both public and private signals about the state of the
economy. In the cross-section, the quality of forecasters’ private signals ought to be reflected
in equal measure in their density forecasts and in their ez-post forecast accuracy. Similarly,
in the time series changes in the precision of either public or private signals, due for instance
to variations in macroeconomic uncertainty, should be equally reflected in changes in both

subjective confidence and forecast errors.

A Scale Test

If survey respondent 7 is forecasting the variable of interest y; at time t—q, their subjective

uncertainty is defined by
U1t2|t—q,i = Et—q,i[(yt — By [yt])Q]a (18)

where E;_,;[.| denotes expectations taken using i’s predictive distribution. If we construct

the random variable
Ditt—g = W — Erqaln)* /05 g (19)

under rational expectations (that is, if the data generating process for y; is consistent with

the predictive distribution) its unconditional expectation has to be equal to one, that is,

E(ye — Br—qalye])*/07j1—qa) = 1. (20)
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Figure 7: Subjective Uncertainty and Forecast Accuracy: A Scale Test
Output Growth Inflation
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We can assess this hypothesis by testing whether a, = 1 in the panel regression
(e = Broqalye)?/ofy_gi = g+ €tigy t=1,.,T, i =1,.,N. (21)

where we use the posterior means of E;_,;[y:| and 0t2|t_q7i from our approach. Estimates of
a, that are significantly greater/lower than 1 indicate that forecasters under/over estimate
uncertainty, and we hence refer to this as a “scale test,” meaning that it is an assessment of

whether density forecasts are appropriately scaled.

Figure 7 shows estimates of «, for different horizons, ranging from ¢ = 8 (H2Q1) to
g =1 (H1Q4) (recall that the variables being forecasted are the year-over-year growth rates
of output or the price level). The crosses indicate the OLS point estimates and the whiskers
the two-standard deviations posterior intervals, which are robust to heterogeneity (Miiller,
2013). The figure shows that for horizons between two and one-and-half years (e.g., ¢ = 6,7
or 8) o, is significantly larger than 1 for both output growth and inflation. In fact, for
output growth «, is about 3, indicating that forecasters grossly underestimate uncertainty,
in line with the literature on overconfidence (Daniel and Hirshleifer, 2015; Malmendier and
Taylor, 2015). For horizons closer to one year (¢ = 5,4) o, remains well above 1 for output,
but is not significantly different from 1 for inflation. For shorter horizons (¢ lower than 3)
oy is significantly lower than 1, indicating that forecasters overestimate uncertainty. The

overestimation is sizable for inflation, with estimates hovering around .5, but less so for
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output. For ¢ = 1 the estimate of «, is barely significantly below 1. Figure D-12 in the
Appendix shows that these results do not change much across different sub-samples (eg,
excluding the Covid period and/or the period 1982-1991 when the Philadelphia Fed was not

in charge of the survey).

Figure 8: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy?
Output Growth Inflation
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The idea behind the regression in (21) borrows heavily from existing literature. Clements
(2014a) in particular computes values for 7;¢,, using the point predictions in place of the
mean E;_,;[y:], and estimates of aflt_q’i obtained from fitting a generalized Beta distribu-
tion. Clements then computes o, using a time series regression for each forecaster i, tests
the hypothesis o;, > 1 and «;, < 1, and reports the fraction of forecasters for which each
hypothesis is rejected. Clements also plots time series averages of o;_q; against each fore-
caster’s root mean square error (again, computed using the point forecasts). Both exercises
are conducted for US SPF surveys for output growth and inflation from 1981Q3 to 2010Q4.
Casey (2021) applies Clements (2014a)’s approach to Euro area, UK, and US SPF, using
a sample from 1999 to 2015. The gist of Clements (2014a)’s and Casey (2021)’s findings
are broadly in line with those reported above: at longer horizons forecasters generally tend
to be overconfident, and this overconfidence diminishes, or becomes underconfidence, as the

horizon gets shorter.

The benefit from running a panel regression as in (21) is twofold. First, we explicitly
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Figure 9: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy?
Baseline vs Weighted
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test whether predictive distributions are correctly scaled using the entire panel, rather than
forecaster by forecaster, thereby getting a clear answer on whether the rational expectation
hypothesis is rejected or not for the SPF. Second, we obtain quantitative estimates of the
average degree of over/under-confidence that are not marred by the small sample problem
affecting individual forecasters’ regressions. The finding that at longer horizons forecasters

are as much as 3 times as confident as they should be, for instance, was not known to our
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knowledge. And so is the finding that at horizon of about one year we cannot reject the
hypothesis that a, = 1 for inflation forecasts. Also, previous literature mostly used point
forecasts, while of course under rational expectations equation (20) holds for the mean, but
not necessarily for the point forecast if this differs from the mean (Figure D-11 in the Ap-
pendix shows that the results for the point forecasts are not very different at long horizons,

but can be quite different at short horizons).

Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-

curacy?

Next, we explore a different implication of the noisy rational expectations hypothesis:
subjective uncertainty and forecast accuracy should co-move, both across forecasters and

over time. Taking logs of both sides of equation (19) and dividing by 2 we obtain:

1
nlys — Ergily]| — Inogs—gi = B i tt—g, (22)
implying that in the panel regression
In |yt - Et—q,i[ytH = /Bo,q + /Bl,q In Ut|t—q,i + Et,i,qv t= 17 () T7 1= 17 3] N. (23)

the coefficient 4, ought to be equal to 1 under rational expectations. Equation (23) is
estimated via OLS where the standard deviation oy;_,; is measured using the posterior
mean of the standard deviation estimated using our approach, and robust standard errors
are computed. Figure 8 plots the point estimates of f3;, for different horizons (crosses) and

the whiskers denote the two-standard deviations posterior intervals.

It is striking that for output growth there is no significant relationship between subjective
uncertainty and the size of the ex-post forecast error for horizons above one year. As the
forecast horizon shortens the relationship becomes tighter, and for ¢ = 1 one cannot reject
the hypothesis that 8;; = 1. For inflation the estimates of /3; , hover around 0.5 for longer
horizons, but increase toward 1 as the horizon shortens, with 3; ; that is also not significantly

different from 1.

Figure 10 shows the estimates of 3, controlling for time, forecaster, and both time
and forecaster fixed effects in order to ascertain whether the results in Figure 8 are mostly
due to differences across forecasters or over time. The results with time fixed effects (top
panels) indicate that for output growth it is generally not the case that forecasters with

lower subjective uncertainty have lower absolute forecast errors on average, even for short
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Figure 10: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects
Output Growth Inflation
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horizons. At longer horizons there is little relationship also for inflation, although for very

short horizons /3 , is one or very close to one. The results with forecaster fixed effects (middle
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panels) suggest that changes over time in the standard deviation of the predictive density
for inflation or output do not map into changes in forecast accuracy for long horizons, but
they do so pretty well for horizons of two quarters or less. This is the case also when we
include both forecaster and time fixed effects (bottom panels). When forecasters change
their subjective uncertainty, possibly because the quality of their private signal has changed,
on average this maps one-to-one into corresponding changes in the absolute forecast errors
for horizons close to one quarter, but not for longer horizons. The Appendix shows that all

these results are broadly robust to different samples.

Figure 11: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Mean vs Point Projections
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To our knowledge, this approach to testing the noisy rational expectations model and
set of results are both new to the literature. As mentioned, Clements (2014a) computes
time series averages of oy,_q; for each forecaster and plots them against the corresponding
predictive root mean square error (RMSE) computed during the same period (Clements
adjusts for the unbalanced nature of the sample—that is, the fact that each forecaster’s
average is computed for a different time period—by constructing weighted averages where
the weights reflect the average forecast error or subjective uncertainty during that period).
Clements concludes that “there is little evidence that more (less) confident forecasters are
more (less) able forecasters.” This exercise compares to our model with time fixed effects,
where we study whether forecasters that are more uncertain also have higher absolute forecast

errors. Our results agree with Clements for output growth and inflation at long horizons, but
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differ at short horizons. One reason for the difference is that Clements uses point forecasts
while expression (18) only holds for the mean: if RMSEs are computed using predictions
other than the mean, there is no a priori reason why they should match the subjective
standard deviation, even under rational expectations. In fact Figure 11 shows that when we
use the point predictions (gray diamonds) the correspondence between subjective uncertainty

and forecast error vanishes at short horizons.™

Most important, the purely cross-sectional comparison undertaken so far by the litera-
ture misses the time dimension of our regression, where we investigate whether changes in
subjective uncertainty over time actually map into changes in forecasting performance. This
aspect is particularly important as it sheds light on whether forecasters correctly anticipate
periods of macroeconomic uncertainty. It also misses the fact that while differences in sub-
jective uncertainty are persistent, forecasters do change their mind about their subjective
uncertainty. This is a feature of the data that cross-sectional regressions do not exploit. The
finding that in the time dimension the mapping between subjective uncertainty and forecast
accuracy is just not there for output, and is only partial for inflation, at longer horizons, but
is in line with the noisy rational expectations model for both output and inflation at short

horizons, is entirely novel to our knowledge.

A Location Test: The Relative Accuracy of Mean and Point Predictions

In light of the different results obtained for mean and point forecasts displayed in Fig-
ure 11, we now briefly discuss the relative forecasting accuracy of mean versus point forecasts.

The top panels of Figure 12 shows OLS estimates of the coefficient v, in the panel regression

In (yt - Et—q,i[yt])2
(?/t - yfﬁ)—q,i)Q

=+ eig t=1,..T, i=1N. (24)

pp

11—qq 18 the point forecast for y, made by forecaster ¢ in period ¢ — g.

where y

Estimates of +, significantly greater than 0 indicate that on average mean projections
fare worse than point projections in terms of mean squared error. In fact, these estimates
can be interpreted as the percentage improvement/worsening in forecast accuracy for point
relative to mean projections. For horizons longer than one year estimates of «, are not

significantly different from 0 for output growth, and only slightly positive for inflation. This

A apter comparison with Clements cross sectional results is in Figure D-14 in the Appendix where we
show the results with time fixed effects and point forecasts. Indeed we find that most coeflicients are not

significantly different from 0 for point forecasts.
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Figure 12: Relative Accuracy of Mean vs Point Projections
Output Growth Inflation
Log Ratio of Squared Forecast Errors (v,)
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result may partly reflect the fact that for these horizons point and mean predictions are not

very different (see Engelberg et al., 2009). As the horizon gets shorter the estimates tend to
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become much larger and significantly positive for both output growth and inflation.

The result that point forecasts perform better than mean forecasts in terms of mean
squared error for short horizons is not new to the literature: Clements (2009, 2010) reports
mean squared forecast errors for horizons shorter than one year and find that these are lower
for point than for mean projections. As in Clements (2010), we interpret these results explic-
itly as an indirect test of the rationality of density projections: under rational expectations,
it better be that the mean of the predictive distribution produces a lower mean squared
error than any other point prediction regardless of the forecasters’ loss function. The fact
that for short horizons this is clearly not the case casts some doubt on explanations for the
divergence between mean and point forecasts that rely on the forecasters’ loss function (e.g.,
Patton and Timmermann, 2007; Elliott et al., 2008; Lahiri and Liu, 2009).

As a further test of the rationality of mean projections, we also run the Fair and Shiller

(1990) regression
Y = 50,q + 61,th—q,i[yt] + 62,qyf7;t)—q7i + €t,i,q» = ]-a 3] T7 1= ]-) ) N. (25)

The rationality of density projections would imply dp, = 0, 41, = 1, and dy, = 0. If point

pp

t1—qq coincide with mean forecasts then the two regressors are multicollinear.

projections y
The middle panels of Figure 12 report estimates of 0, , (black crosses) and do, (gray dia-
monds) for different horizons ¢, while the bottom panels report estimates for the constant
do,4 = 1. For horizons longer than one year, estimates of d; , are generally larger than those
for 09 4. Estimates for 0; 4 are significantly below 1, and estimates for the constant are signif-
icantly different from 0. As the horizon shortens, estimates for the constant become closer
to 0, in line with rational expectations, but estimates of ds, rise toward 1 while estimates

of 0,1, fall to 0, indicating that point predictions are much closer to actual outcomes than

mean forecasts.

Summing Up: Are SPF Density Forecasts Consistent with the Noisy Rational
Expectation Hypothesis?

The body of evidence collected in this section suggests that the answer is no. For
horizons close to two years there is strong evidence that 1) forecasters are overconfident,
and 2) there is virtually no relationship between differences in subjective uncertainty both
across forecasters and over time and differences in forecasting performance. This is the case

for both output growth and inflation, although overconfidence for output growth is quite
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striking. For horizons close to one year we cannot reject that inflation density forecasts are
correctly scaled, while output growth density forecasts flip from being overconfident to being
underconfident. For both, the mapping between ez-ante uncertainty and ex-post forecast
errors is far from one. For very short horizons, density forecasts are correctly scaled for
output growth, and slightly underconfident for inflation. For both output and inflation there
is (almost) a one-to-one mapping between subjective and ex-post uncertainty, both across
forecasters and over time, in accordance with the noisy rational expectation hypothesis. But
while the second moments of the density projections seems to line up with theory at short
horizons, the first moments do not: mean projections deliver higher mean squared errors

than point projections.

In sum, we reach a similar conclusion for density projections as Patton and Timmermann
(2010) reach for point forecasts, namely that differences across forecasters (and, in our case,
also over time) cannot be explained by differences in information sets. One hypothesis is

that these differences stem from heterogeneity in models.

IV  Conclusions

In this paper we presented a novel approach for conducting inference using data from prob-
abilistic surveys, and used it to investigate whether US Survey of Professional Forecasters
density projections for output growth and inflation are consistent with the noisy rational
expectations hypothesis. We find that for horizons close to two years there is no corre-
spondence between subjective uncertainty and forecast accuracy for output growth density
projections, both across forecasters and over time, and only a very mild correspondence
for inflation projections, in contrast to what rational expectations would predict. As the

horizons shortens, the relationship becomes one-to-one, in accordance with the theory.

While the inference approach we propose arguably several advantages relative to current
practice—for starters the fact that we explicitly conduct inference—it is important to point
out some limitations of our analysis. We provided some consistency results that take advan-
tage of the non parametric nature of the approach, but these only apply to the model as a data
generating process for the data that we observe—the bin probabilities. Regarding the ob-
jects we are truly interested in—the underlying continuous predictive densities—consistency
results are only available in the unrealistic case that the number of bins goes to infinity and

the bin width goes to zero. When these conditions are not met, the limited information
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provided by forecasters implies that posterior uncertainty regarding the objects of interest
remains even when the number of forecasters goes to infinity, simply because there is not
enough information to identify the underlying predictive densities. This implies that the
results obtained with our approach may be sensitive to the choice of the base function and

of priors. More work needs to be done in this dimension.

In addition, the approach proposed in this paper deals with one survey (one cross-section)
and one forecast variable at the time. It would be interesting to extend the approach to a
panel context, which would permit joint inference across surveys for any object of interest.

We leave this extension to future research.
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Appendix

A Data description

We focus on the Survey of Professional Forecasters, managed since 1992 by the Federal
Reserve Bank of Philadelphia, and previously by the American Statistical Association and
the National Bureau of Economic Research. The panel of forecasters include university
professors and private-sector macroeconomic researchers, and the composition of the panel
changes gradually over time. The survey, which is performed quarterly, is mailed to panel
members the day after the government release of quarterly data on the national income and
product accounts. We restrict our attention to the two variables for which the SPF has
probabilistic questions, namely year-over-year GDP growth and GDP deflator inflation over
the sample 1982Q1-2021Q4.

B The Gibbs Sampler

For computational reasons, we take a data augmentation approach and write the Gibbs

sampler using the joint distribution h(z, £|@). Our infinite mixture model is then

ha(e.§) = [ hiz€l6)G Zwkh 16, (A-1)

Our Gibbs sampler applied to the cross section of (z;,&;), ¢ = 1,...,n uses the convenient
approach proposed by Walker (2007) and Kalli et al. (2011). For each forecaster 7, conditional
on the sequence of weights wy’s (w1.) and the sequence of atoms 0;’s (01.,), expression

(A-1) can be written as the marginal distribution of
h(zi7 £i7 ui|w1:oo; 01:00 Z ]I u; < wk: Z’L7 |0k) (A'2>
k=1

with respect to u;, where w; is uniformly distributed over the interval [0, 1], and independent
across 4, and I(-) is an indicator function. This implies that the conditional distribution of
z; and &, given u,;, the weights and the atoms, is

h(zia£i|uiaw1:ooa01:oo) = ; Z h(Z17€z|0k)7 (A_B)
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where the set A(u;|w1.o0) includes all the atoms with a weight wy, larger than u; (A(u;|w1.00) =
+oo

{k : u; < wy}), and the marginal h(u;|wi.0) = ZH(UZ < wy,) since each h(-|@y) integrates
k=1
to one. Unlike expression (A-1), expression (A-3) is a finite mixture where each component

1
has probability TR which is straightforward to draw from using standard methods.

(ui|w1:oo)
Specifically, we will use the auxiliary indicators d;’s, which are equal to k if we draw from
the k™ mixture component (note that, given u;, the "™ component will only be drawn if it

belongs to the set A(u;|wi.)). The resulting complete-data likelihood function is

L<Z1:n7 El:n‘ulsm dl:na V1:00) 31:00) = H H{ui<wdi}h(zi7 €l‘9dz) (A_4)
i=1
with d; € {k : u; < wy}, where v1.o, is the infinite dimensional sequence containing the

stick-breaking components which map into the weights via expression (12).

Let Dy = {i : d; = k} denote the set of indexes of the observations allocated to the
k-th component of the mixture. Let D = {k : Dy # 0} denote the set of indexes of the
non-empty mixture components (in the sense that at least one i is using the kth component)
and d = max D the overall number of stick-breaking components used. The Gibbs sampler

works as follows:

L. Vtioos Utin|diim, O1:00, Vs Z1in, €1y
Call vy.g the stick-breaking elements associated with the mixture components that are
being used (conditional on dy.,). Following Kalli et al. (2011), drawing from the joint
posterior of vy.4, Ugy1.00, and Uy, conditional on all other parameters, is accomplished
by drawing sequentially from: (a) the marginal distribution of v;.z, (b) the conditional
distribution of uy., given v;.z, and (c) from the conditional distribution of vz, .., given

Uy, and vy.4.

(a) Ul;J|d1:na 01:007 @D, Z1:n, El:n'
After integrating out the wu;’s, the posterior of vy.,, is proportional to

p(vlzooldlzna 01:007 ¢7 Z]:p, €lzn) X <H wdih(zia §1‘0d1)> <H(1 - Ul>w_1>
=1

=1

x (H (Udi ﬁ(l - Ul)) h(Zi,€i|9di)> (H(l - Ul)w_1> :

i=1 =1 =1
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Now note that since vz, .., do not enter the likelihood (A-4) — that is, the term

within the first parenthesis — they can be easily integrated out resulting in

n di—1 d
P(V1aldin, O1.00, Vs Z1n, €1.0y) X (H (Udi [Ta- Ul)) h(zi7€i|0di)> <H(1 - Ul)w_1> :

i=1 =1 =1

Therefore samples for v,.; are obtained by drawing each v independently from

W(Uk‘ulsn7 dl:?"w cee ) X (1 - /Uk)w—i_bk_lvgk (A_5)

where a;, = Y I(d; = k) and by = » I(d; > k), that is, v is drawn from a
=1 =1
Beta(ay + 1,b, + ).

(b) ul:n|vl:J7 dl:ny 01:007 ¢a Z1:n, Sl:n'
The likelihood (A-4), seen as a function of each w;, i = 1,...,n, is simply a
uniform distribution over [0, wg,]. Hence
1

m(u|...) o (u; < wg,). (A-6)

<C> UJ+1;oo‘u1:n7 V1.4, dl:na 01:007 1/}7 Z1:n, €1:n'
Again, vz, .., do not enter the likelihood (A-4), so samples from those v, with

k > d are simply obtained by drawing from the prior Beta(1,)):
(VR U1y diog, - .. ) o< (1 —vg)¥ L (A-7)

Of course, even if it is straightforward to execute, we do not want to generate
an infinite number of draws. Fortunately we do not need to, as explained in
Walker (2007). Inspection of (A-4) reveals that those mixtures for which wy <

u; will never be us?d, at least given the the draw for u;. Let n; the smallest

5 00
integer such that Zwk > 1 — u;. Since by construction Zwk = 1, it must

k=1 k=1
o
be that Z wy < u; and therefore, a fortiori, wy < w; for £ > n,;. Now define
R+l
n = max{n;,i = 1,...,n}. Conditional on u;.,, at most we will use i mixture

components in the estimation. Hence we only need to draw vg, ..

2. 0100|100, Uiy A1ins ¥, Z1ims €1
For the same argument given above, we actually do not have to draw an infinite number
of atoms, but only as many as they may possibly be used (at least given the current
draw of u;.,) — that is, at most n. Note also that given the way the w;’s are drawn

(from a uniform distribution over [0, wy,]), if £ € D then k < 7.
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(a) For k € D draws of 8, are obtained from

7(0i...) (H h(zi,ﬁilek)> Go(0r) (A-8)
€Dy,

Since the joint distribution is not tractable, samples have been generated by

Adaptive Metropolis Hastings (AMH) proposed in Andrieu and Thoms (2008).

More specifically, at the j-th iteration of the AMH for a parameter @ of dimension

p the proposal distribution is

0 ~ N(g(j—1)7 T(j)) (A-9)

with covariance matrix T = exp{¢U )}[p where ¢ is adapted over the iterations
as follows
£0) — g1 4 40 (40D _ g) (A-10)

where & = 0.3 represents the desired level of acceptance probability, and a1 ig
the previous iteration estimate of the acceptance probability (i.e. the acceptance
rate). The diminishing adaptation condition is satisfied by choosing A = =),

In the application we set a = 0.7.

(b) For k ¢ D, k < n draws of 6 are obtained via independent draws from the base

measure (77).

We therefore obtained a sequence of draws 61.;, which we will use in the next Gibbs

sampler step.

3- dl:n|U1:007 Ut:n, 01:007 ¢7 VARY él:n
Draws for each d;, © = 1,...,n, are obtained by drawing from a multinomial with

weights proportional to

with d; € {1,...,n;}. Note that in this draw we consider all possible mixture compo-
nents from 1 to n;, not only those used so far (that is, those in D). They will be drawn

proportionally to their ability to fit of the data, as measured by h(z;, &;|0%).
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C Further theoretical results

C.A Model properties

In this section, we present some properties which illustrate the flexibility of our non-parametric
random histogram model. The behaviour of the model as the number of bins goes to infinity
shows that our framework is theoretically sound since it can be used to approximate any

subjective distribution when (2) holds.

Let (z;,&;),i=1,...,n beiid. samples from h(z, &|@) and assume the forecasters never
report zero probablhtles (that is, conditional on &;; = 0 Vj), then in expectation z;; coincides
with v;: E[z;|6] = v;(6). Expression (A-1) then implies that the distribution of each z;,
conditional on &;; = 0 V7, will be centered at the infinite mixture of the bin probabilities v;’s

implied by each mixture component F(-|8}):
E [24]G] = Zwk’/y (6r) = Zwk (v510k) — F(yj-1]6k))- (E-1)

We show that our random histogram (prior) model converges to an infinite dimensional
(prior) model approximating any subjective distribution in the topology of weak convergence.
This flexibility implies that the non-parametric prior alleviates possible misspecification is-

sues.

Introduce a latent Dirichlet process Z;(-)|8; ~ DP(¢(8;), F(-|6;)) with parameters
$(8;) and F(-|6;), given 6; from G. This process defines a random measure on the observation
space ) of the variable of interest (inflation), that is the support set of the subjective

distribution F'(:|@), and admits the equivalent stick breaking representation
y) =Y wil{y; <y} (E-2)
j=1

where y;; j = 1,2,... are i.i.d. random variables with common distribution F(-|8;) and w;;

j=1,2,... are obtained by using a sequence of i.i.d. Be(1,¢(8;)) random variables.
A7 and Z; o (y) on V.

Proposition 1. If a; =0, j =1,...,J, the Bayesian model

z;|G (S ha(z), i=1,...,n
GNIDP(djaGO)
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where z; = (2,1, ..., 2;,s) admits the following stochastic representation:

(Zity -y 2id) = (ZiooW1)s Zioo(Y2) = Zico(W1), -y 1 — Zioo(yy-1)) i=1,...,n
Zivo " DP($(6,),F(-|6,)) i=1,....n

0, G i=1,...,n
G ~ DP(¥, Gy).

given the true subjective probability distribution F'(-|@;) of the i-th forecaster and its
level of noise ¢(8;), the forecaster reports the weights (2;1,...,2;s) corresponding to the
increments of a "noisy” version Z; o, of F(-|@;). This "noisy” version is the CDF obtained

by a Dirichlet process with base measure F(:|8;) and concentration parameter ¢(8;).

When a(-le) # 0 an extra noise is set in, resulting in a random proportions of bins which
are randomly set to zero with probability a(v;(¢p;)|e). After this deletion, in order to obtain

the z;, the increments of the Dirichelet process Fj are simply normalized to sum one.

forecaster-specific subjective distribution. Given the subjective probability distribution
F(-|6;) and the level of noise ¢(8;), the forecaster reports the weights (z1,...,2.;) corre-
sponding to the increments of a "noisy” version Z; o, of F (|é,) This "noisy” version is
the CDF obtained by a forecaster-specific Dirichlet process with base measure F(-|0;) and

concentration parameter ¢(8;).

By (E-2), the latent Dirichlet process Z;  is a random discrete CDF with infinite number
of discontinuity points. To exemplify we depict Z; ., by the red stepwise line in Figure E-
1. Despite of its discreteness, the process Z; », ensures that our prior model gives positive
probability to any weak neighbourhood of any distribution defined on the support set of
F(:|6;). A combination of Proposition 1 and Theorem 3.2.4 of Ghosh and Ramamoorthi
(2003) gives the following result.

Corollary 1. Assume that ) C R is the support set of F'(-|@) for any 6. Let F(-) be a
distribution function with support subset of ), then P({Z; € Ur}) > 0 for any weak
neighbourhood Uy of F'(-).

The random process Z; », can be seen as the limit of the histograms z; when the number of
bins goes to infinity. To show this formally, we associate the random histogram z; to a random
CDF Z; ;. For any J we consider the partition P; = {yd = —0o < y] < ... <yj = +oo}
and define the following one-to-one mapping between z; and the CDF Z; ;. Without loss

of generality, we assign to the middle point of each interval the bin probability mass, and
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Zi,3(Y),Zi.oo(y)

1 ——-
&0
zi,J*l + . + Zi,l T .:&é
B =) |
---——0 1 |
Zi3+ Zig+ Zig t —--- | |
[ 36 | |
0 | | |
O | | |
Zi72 + Zivl T | T : :
e | | |
O | | | |
Zil T .?._O>—<‘> : : :
o | | | |
+—0-0—— ! L " . }
Y- Y2 Ys Yj—2 Y Y+ Yy

Figure E-1: Mapping between z;;, j =1,...,J, Z;;(y) and Z; (y).

account for the two open bins (first and last) by introducing two auxiliary points y?, yi,
such that —oo < 3/ < y; < yyjq < yi < 4o0. With this position we define the process
Z; j(y) (black line in Figure E-1):

(

0 if y <y’

Zi1 if y/ <y< (yi]+yé])/2

Zig(y) =19 2+ +a;  ifye vl +y))/2 (vl +yl)/2) for2<j< g2
Zig+ -t ziga ity eyl o+yr1)/2y])

1 if y > y]

\

The next theorem shows that Z; ; converges to Z; o, with probability one in the topology
of the weak convergence. Moreover, under continuity assupmtions, the asymptotic mean
of Z; j, conditionally on éi, coincides with the true subjective distribution. Note that,
conditionally on 0;, the mean of Z; « 1s the true subjective distribution, i.e. E[Zwo()|éz] =
F(16,).

Theorem 2. Assume that «; = 0 for all j and the sequence of partitions (P;); is such that

y1 — —00, ysj_1 — +o0o0 and max{|y;41 —y;| : 1 <j<J -2} = 0for J — +oo. Then,

P{Jl_i}r&o Z; ;(y) = Zi o (y) for any y point of continuity of Z; ..} = 1.
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If F(-|0;) is a continuous CDF, then

i E{Z:(9)0:] = E[Zi(5)/0] = F(sl0)  as

C.B Further asymptotics
C.B.1 Posterior consistency

If oj =0for j =1,...,J, ie. forecasters give non-zero probability to each bin, the sample
space is Z = A7 and H is the set densities (with respect to the Lebesgue measure) on A7

In this case, Kullback-Leibler divergence between two distribution hg, g on Z = A7 is easily

defined as
KL(hg,g) = /zhO(Z) log (ZO(—(ZZ))>dz.

As a corollary of the main theorem, we get a simpler result for the case in which a;(8) =0
forall j =1,...,J. In this case M™ is replaced by the set M of finite mixtures of

J-1

] [T T @0)150)) 1T oomor1(, _x~, \@@-
h(2/6) = (5 o0 0>1:I (1-25)

<

and H,, by the set H, of densities on A’ that can be approximated in the Kullback-Leibler

sense by densities in M, i.e.
Ho = {ho density on A”: Ve >03g € M st. KL(hy,g) <e }.

Theorem 3. Let © be an open subset of R™ for some m and (@) =0forall j =1,...,J.
Assume that 0 — (4(8)11(6),...,0(0)r,(0)) is a continuous function on R such that
#(0)r;(0) > 0 for every j = 1,...,J. If Gy has full support, then the posterior is weakly

consistent at any density hg in H, such that

e (H( S ))

7j=1
Remark 1. If oj(0) =0forallj =1,...,J, ¢(0) = ¢, and a mixture of normal distributions

z)dz < +00. (E-3)

is assumed for the subjective distribution, that is

y|0 sz y|Mw 1 (E‘4)
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then the parameter vector is @ = (p1,...,lar, O0y. o, Oopy w1, ... wWar, @), If Gy has full
support, then the posterior is weakly consistent at any hg in Ho satisfying (E-3). Indeed,
in this case (¢11(0),...,¢r,(0)) is a continuous function on R and ¢v;(0) > 0 for every
j=1,...,J.

The next Proposition gives some conditions ensuring that any continuous density func-

tion belongs to H,.

Proposition 2. Assume «;(@) = 0forallj =1,...,J and that 8 — (¢(0)v1(0),...,(0)v;(0))
is a continuous function on Ri such that ¢(0)v;(0) > 0 for every j =1,...,J. If for every
a = (ay,...,a;) € [1,+00)’ and § > 0, there is 85 in © such that ||a — as|/« < & with
as = ¢(05)(v1(05),...,v;(05)), then any continuous density function on A’ belongs to H.

Remark 2. Note that combining Theorem 3 and Proposition 2 one gets that, under the
assumptions of Proposition 2, if Gy has full support, then the posterior is weakly consistent at
any ho which is continuous on A” and satisfies (E-3). An example in which all the conditions

of Proposition 2 are met is the fully non-parametric case

F(y|0) = Z o;la, (y) (E-5)

where A; = [yj,+0), j = 1,...,J =1, Ay = [y*,4o0] and v;(0) = ¢;, j = 1,...,J.
Conditions in Proposition 2 are satisfied also in the Gaussian mixture case of (E-4) with
M=J-1

C.B.2 Posterior consistency of the consensus distribution

The aggregate subjective distribution, also known as consensus distribution, is defined as
_ 1 —
Fy)=—> F(y)
i=1

where F;(y) is the forecast-specific subjective probability defined in (14). In what follows,

F, 11 denotes the posterior predictive distribution of y, defined as

Foi1(y) = P{yn+1 < ylzi,i=1,...,n}.

The next proposition shows the connection between the two quantities in our model.
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Proposition 3. The distributions £ and F,, are related by

_ N = Yo
Foi(y) = n+¢0F(y)+n+wo

F(yl0)Go(db).

Using the previous relation one obtain a useful asymptotic properties of the consensus

distribution.

Proposition 4. Under the same assumptions of Theorem 3,

m (Fo1 (i) — Fog1(yim1)) = lim (F(y;) — Fyiz1)) = /ziho(z)dz a.s.

n—-+o0o n—-+o0o

for i =1,...,J. Hence, if there exists F* such that /ziho(z) = F*(y;) — F*(yi—1), then

lim F,(y) = lim F(y) = F*(y) a.s.
n—-+00 n—-+o0o
As in Subsection C.A, we consider set of nested partitions P; = {y] = —oo0 < yj <

... < yj = +oo} in such a way Py, is a refinement of P;. We assume that observations

M
z],...,z’ are available with a ”true” distribution hg = hg in M, i.e. ho(z) = Z w; oh(z|6;0)
i=1

for suitable integer M, positive weights (w1, ..., w ) and parameters 01, ...,0y in O.
Note that with these hypotheses z‘1] ....,z7 are consistent in J, that is if J' > J then

n

z = Z z]‘-]l if the i-th bin in P; correspond the the union of the bins j € I(i) in P,.. This
JEL(@)
allows to consider limit jointly in the number of observations (n — +00) and in the number

of bins (J — +00). Note also that for every J and every bin (y;—1,y;] in Py

/ whid () = F* () — F* ().
for

M
F(y) == Zwi,OF(y‘ei,O)'
i=1

Proposition 5. In the setting described above, under the same assumptions of Theorem 2

on Py, then

lim F.ii(y) = lim F(y)=F*(y) a.s.

J——+oo,n—~+00 J—400,n—400

for every y point of continuity of F™*.
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D Proofs

D.A Details on formula (16)

Let H be the set of all the densities with respect to A, i.e. the densities g that factorize as
9(&,2z) = g(&)g(z¢|€). This assumption is coherent with the model assumption in (4), indeed

h(&,2|0) = h(£|60)h(z¢|0,£), (B-1)

where

J
h(£l6) = % H a;(0)% (1 — a;(0))' 5

and h(z¢]0, &) = h(z|0,&) is the Dirichlet distribution of parameters [¢(0)v;(0) : j € T (&)]

defined on the non zero elements z,.

Given two densities hg and ¢ in H the Kullback-Leibler divergence between hg and g is
defined as

KL(hg,g) = /Zho(ﬁ,z) log (ZO(§’5>>dA.

Hence, writing ho(z) = ho(§)ho(z¢|€) and g(€,2) = g(§)g(z¢|€), by Fubini Theorem one

can re-arrange the previous expression as

;%(g) /A o oleeteos (CCe ey )
- og (10l&) el (02O
_;(ho(g)l g(g<£> ) +;ho<€) /AJs ho(ze|€)1 g<g(zg|£) >d c.

D.B Proofs of Theorem 1 and 3

The proof of Theorem 1 is based on an application of Theorem 1 and Lemma 3 of Wu and
Ghosal (2009a,b). In order to prove Theroem we need a slight generalization of these results.

For the shake of clarity we state and prove this generalization.

In what follows, we denote with supp(u) the weak support of a probability measure
p. We assume that Ap is a subset the finte set X = {& € {0,1}/ : €] < J}. Following
the notation introduced above, the sample space Z is the set of all the pairs (&,z), where
E=(&,...,¢5), 2= (21,...,27), & = I{z; = 0}. The non-null elements of z, denoted by
z¢, takes values in an open subset Zg of R’ In our application Ze = A7l On the
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sample space Z, one can thus define a o-finte measure A\(d€dz) = c(d€) ® L¢(dz¢) where ¢
is the counting measure on X and, given &, L is the Lebesgue measure on Z C R7IE,
Let H be the set of all the densities with respect to A, i.e. the densities g that factorize
as g(&,2z) = g(€)g(z¢|€). We also assume that the kernel h(&|0)h(z¢|0,&) factorizes in the

same way, 1.e.
h(€,2|0) = h(£|0)h(z¢|€, 0).

Finally, given a probability measure G on ©, we write
he(é.2) = | (€ 210)G(a0) (B-2)
e
and we assume that II is the prior on H induced by the map (B-2) when G has prior I1.
In our application, hg(€,2z) is given by (4) and I1 is the Dirichlet process prior DP(¢, Gy).

Theorem 4. Let © be a Polish space and hg a density in H. If for any £ > 0 there is a
probability measure G, € supp(f[) and a closed set D, in © such that

(1) Kbl he) = 3 ofe /og(h’;jgjjgh(fg))h()(zas,)cm<s;

(H2) D. contains supp(G.) in its interior and for every &

ha. (z¢|§)ha. (§) ,
/zg log <inf9€DE h(ze€, ¢sv)h(g|¢9))h°(z€ €)dze < +oo:

(H3) Zglrelgs elean h(&]0)h(z¢|€, 0) > 0 for every £ and every compact set C¢ in Zg;

(H4) {0 — h(&|0)h(z¢|€,0) : z¢ € C¢} is uniformly equicontinuous on D,, for every & and

every compact set Cg in Z;
then II{ K L(ho, hg) > €} > 0 for every € > 0 and hene II is weakly consistent at hy.

Assumption (H1) corresponds to (Al) in Theorem 1 of Wu and Ghosal (2009a). As-
sumptions (H2)-(H3) correspond to assumptions (A7)-(A8) of Lemma 3 of Wu and Ghosal
(2009a), while (H4) is slightly different from the original assumption (A9), see Wu and Ghosal
(2009b). The theorem reduces to Theorem 1 and Lemma 3 of Wu and Ghosal (2009a,b) when
Xp is the single point € = (0,...,0).
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Proof of Theorem 4. One has

AT

KL(ho,ha) = KL(ho: he.) + Y ho(8) | ) ol |€)dze

= AJ-le he(z¢l€)ha(§)
. oo (162l Ohe (&), o
<ct X l® [ o (e S el = = + A.(6),

If we show that there is an open neighbourhood V' of G such that for every G in V' one has
A(G) < e, then II{ K L(hg, hg) > 2¢} > 0 for every € > 0. To prove the claim, for every &
by (H2) we find a compact set C¢ such that

he. (z¢|€)ha. (€) .
/Cg log <infoeDe h(zs|§,9)h(£|0)>h0(zﬁ|£)dzﬁ <=

W

and

€
/Cg ho(z¢|€)dze < Fg(?)'

Let Vp := {G : G(D.) > 1/2}. Since G.(D.) = 1, by Portmanteau Theorem V' is an open
neighbourhood of G.. Now

holé.ze) = [ H(E2l0IG(B) = jnf H(EB)hlzelé, O)G(D).

hence, for every GG in V7,

th (57 Zﬁ)
/Cg log <—hG(§,z§) )hol€, 2¢)dze

hGE(éJ Zﬁ) .
- / 19 (g, M 0)h el 9)) 0 7el€) e + 122 / hozel€)dzg < ©.

(B-3)

By condition (H4), for every & there are zg) € Ce i =1,...,m, such that for every z¢ € C¢
there is ¢ for which

sup [1(€]0)h(z[6.0) — h(€.2¢10)| < 5
0cD.

where ¢ := inf eian h(€|60)h(z¢|€,0) > 0 by (H3). Since G.(0D.) = 0, the set
£ €De

z¢€C

ce

ngz{G:/Dh(g,zg>|9)G€(d9)—/ h(s,zg)|0)G(d9)‘<E, i=1,...,m}

€

is a weak neighbourhood of G.. Hence, for G in V¢

ce

‘/Eh(E,ZEIO)GE(dH) —/DE h(g’zdg)g(dg)’ < -
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Since supp(Ge) C De,

/1g(%)ho(z5|§)dz5§/l (ffz; i»zze!; (( ))>ho(zs|§)dzg.

Hence, using log(z + 1) < z and (B-4), for G in Vj N Vg one obtains

he. (€, z¢)
log ( —22—=% ) ho(2z¢|€)dz <— B-5
. 1on (e Yoty < (B-5)
At this stage, combining (B-3) and (B-5), one obtains that A.(G) for every G in V =
Vo (NeVe). O

We can now prove both Theorem 3 and Theorem 1.

Proof of Theorem 3. The proof consists in an application of Theorem 4 for Xy = {(0,...,0)}.
Let

and

[1L, T((0))
() 7(0)

Verification of (H1) of Theorem 4. By hypothesis, for every ¢ > 0 there is g.(z) =

Zg =

Zwm z|0;.) in M such that K L(hg,g.) < e. To see that (H1) is satisfied, write g.(z) =

/ h(z|0)G.(dO) = hg.(z) for G( waégm(de) Now supp(G.) = UM{0,.}. To

conclude recall that if II is DP (¢, Gy) and supp(Gg) C supp(Gy), then G. € supp(Il); see,
for instance, Theorem 3.2.4 of Ghosh and Ramamoorthi (2003).

Verification of (H2) of Theorem /j. Given G, as above, one can find a compact set D,
in © such that D, contains UM< {0;.} = supp(G.) in its interior.

Now

I.(z) = Bieans h(z|0)
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where C . = ging Zyt, 1 = sup{7;(0) : @ € D.}. Now one has that C;. > 0 and y;. > 0,
€

since D, is compact and the v,(0)s are continuous and strictly positive.

On the one hand hg_(z) > I.(z) and hence log(hg,(z)/I.(z)) > 0, on the other hand

h h
/log( -ZE((Z z)dz < /log GE o(z)dz
1 ge<z) h d 1
preT (z)dz + [log(C1 o)
] 1 }Ljsfl 1 — J-1
[T521 #; ( 21 ZJ)
Since
J-1 i SN J-1 Ant NG S |
Cs.e H Z;flj,g—1(1 _ zj> J, < g.(2) < Cs. H ZJBJ-,E—l (1 B Zj) J
7j=1 7j=1 Jj=1 Jj=1

for suitable constants Cs ., Cs ., A1, ..., Big,..., By, it follows that

J=1 J-1
(z
log | ————— 9¢(2) vt || S Cae 1+ [log(z)| + | log(1 — zj)ll
Hj;l z;,‘JaE <1 — Zj;l zj> L j=1 )

i log <ﬁ2j<1 - Ji@)) u

S 04,6 1 +

Combining all the estimates, one gets

/ log (h[iziz)))ho(z)dz <Gy,

by assumption (E-3). Hence

he.(z)
0 < /log (m)ho(Z)dZ < +00.

Verification of (H3) of Theorem 4. It follows immediately that, for every compact set C'
in the open simplex A’
inf inf h(z|@) > inf II(z)

zeC 0D, zcC

and the right hand side is strictly positive.
Verification of (H4) of Theorem 4. Under the hypotheses, the function (0, z) — h(z|0)

is continuous and hence uniformly continuous on the compact set C' x D.. It follows that
the family {(0,z) — h(z|0) : z € C} is uniformly equicontinuous on D..
0
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Proof of Theorem 1. The proof consists in an application of Theorem 4 for Ay = X and
follows the same line of the proof of Theorem 3. In the present case, everything has an extra

dependence on the fixed € in X. In place of I.(z) one has

il gy Tt 2 11
Jj=1 JGJ* &)
where I e F(5,(0))
Zg(€) = —*
F(Z;ej*(ﬁ)ﬁ(0)>
Moreover,
I(z¢]€) = C1o(6) [ =" = I2(zel€)
JET* (&)
where J
Crel€) = inf — [ os(0)5(1 - a;(0)) 525" (¢).

ocD. c(6) -

and p; . = sup{7;(@) : @ € D.}. Also in this case, C; . > 0 and ;. > 0, since D, is compact,
vj(0) and «;(0) are continuous, 0 < a;(0) <1 and v,;(0) >0, j=1,...,J. Finally,

C2s H ZJE <hG(£Z<CSE H Z]E

j€T* (&) j€T* (&)
for suitable constants Cy.(§),C5:(§), A1, ..., Big, ..., Bje. With this minor modifications,
the verification of (H1) and (H2) is exactly as in the proof of Theorem 3. Assumption (H3)

18 true since

inf inf h(&€|0)h(z¢|€,0) > incf IZ(z|€)
zcCg¢

z¢€C¢ 0D,
and the right hand side is strictly positive by the assumptions on the v;(0)s and «a;(8)s.
Analogously,

(0,2¢) — h(£|0)h(z¢|€,0)

is uniformly continuous on the compact set C¢ x D, and hence (H4) follows. O

D.C Proof of Proposition 2

The proof of Proposition 2 is divided in various Lemmata. For the sake of notational sim-
plicity set

I‘(Z;’:l aj> J—1 J—1 arl
= %)

=1

D(z;aq,...,a5) =

<.
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Note that
h(z|0) = D(z;v(0)).

where () is defined in (B-6).

Lemma 1. [Barrientos et al. (2015)] Let go be a continuous density on A”. Then, for every
M,

€ > 0 there is a density g.(z) = ZqiﬁgD(z; Qites---,05:) where a; ;. > 1 for every i and
i=1

7, such that
HgO - ga”oo S €.

Lemma 2. Let a = (ay,...,a;) € [1,+00)’. If for any § > 0 there is 85 € © such that
la — D(05s)]|0o < 0 then for any € > 0 there is 6. € O such that

ID(a1, ... ay) — D(in(6.), ..., 75(8.)) ]| < c.

Proof. The Proof is left to the reader. m

Lemma 3. Assume that, for every a = (aj,...,a;) € [1,+00)” and every § > 0 there is

05 € O such that ||a — 2(05)|lsc < 0. Then, for every continuous density go on A’ and for

M.
every ¢ > 0, there is a density g.(z) = Z ¢eD(z;0(0;.)) in M such that
i=1

Hgo - gsHoo S €.

M.
Proof. By Lemma 1, there is a density g.(z) = Zqi,ED(Z; Qites---, Qi) Where a; ;. > 1

i=1
for every i and j, such that ||go — ¢clloc < €/2. Now, by Lemma 2, there are ;. such
that ||D(;ai1e,---,ai0:) — D(501(0ic), .., P5(0ic))]|oc < €/2. Hence, setting §.(z) :=

M
Z e D(z;71(0;,),...,0;(0;.)), one gets
i=1

HgO - §s||oo SHQO - gsHoo

M
+ Z%’HD(';ai,l,s; s 7az‘,J,s) - D(7 771<9i,5>, ey I;J(ez,e))Hoo S g.
i=1

Lemma 4. For every densities g; and g, in A’

sup, |91(z) — g2(2)|?

KL <
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Proof. By Jensen inequality

KL(g1,92) <log (/ 91) .
g2

Now, since log(1 + z) < x for every x > 0

log( i) ( (91 ;292) +1>> < / (91 ;292)2 < S Iig];f(zZ;Q—(zg)z(Z)l2

Proof of Proposition 2. We need to prove that, if hg is a continuous density on A7, then, for

]

every n > 0, there is a density g, in M such that
KL<h07 gn) S n.

Let h.(z) = max(e, ho(z))C- " where C. = /max(e, ho(z))dz < 1+ ¢. Clearly h. > ¢ and
ho < C.h.. Hence, by Lemma 5.1. in Ghoshal et al. (1999), for any density g

KL(ho,g) < (2+¢)log(l + ) + (1 + &)[KL(he, g) + /K L(he, 9)]. (B-7)

By Lemma 3 there is a density §. in M such that [|h. — §:]| < €/2. From the previous
inequality it follows that g. > h. — /2 > /2. Hence, by Lemma 4

KL(hege) <e

The thesis follows by taking n = (24 ¢)log(1 +¢) + (1 + ¢)(e + V&) and g, = §-. O

D.D Proofs of Propositions 3 and 4

Proof of proposition 3. Note that
Foi(y) = E[F(y|04,.,)|zi,i =1...,n]
which yields

E[F(y|@q,,,)|z;i=1...,n] = E[E[F(y|04,,,)|04,,2i,i=1...,n]|z;,i=1,...,n]
= E[E[F(y|04,.,)|04,1=1,...,n]|z;;i=1,...,n]

By Proposition 1, 0, := 0,, are drawn form a DP (¢, Gy), hence the predictive distribution

of 84, given 84,1 =1,...,nis

Z(sgd (d6) + —2—Gy(-),

Gn+1( n 4+ w

n—l—w
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see (77). Hence by the law of iterated expectations

EF (116641 =1....1) = [ F(y16)Gs(d)

n
n—+y

W o Fon) 4 [ FwieG@)

Since
n

B[L > F(yl6s)

i=1

Zi, 1 = 1,...,n} = F(y)
we obtain the result

Fri(y) == P{Y,11 <ylzs;i=1...,n} = F(y) +

Proof of Proposition 4. Recall that posterior consistency yields predictive consistency, see
e.g. Theorem 4.2.1 in ? since ¢(z) = 2; is a bounded and continuous function on the simplex
the thesis follows. O

D.E Proofs of Proposition 1

Proof of Proposition 1. Recall that since Z; . (dy) is a Dirichlet process with concentra-
tion parameter ¢; and base measure F'(dy|@;), then for any finite partition By,..., By of
R it follows that (Z; o (Bi), ..., Zi(Bys)) has a Dirichlet distribution on A7 of parame-
ters (¢(0,)F(B1]0;),...,6(0;)F(B;|6;). Hence, the random vector z; = (z;1,...,2.5) =
(Zioo(W1) = Zioo(Y0)s - - s Zioo(Ys) — Zi oo (ys—1)) has the Dirichlet distribution on the simplex
A’ of parameters (¢(0;)v1(60;),...,6(0;)v;(0;)). When a;(-le) = 0 for j = 1,...,J, the

Bayesian model considered in Sections 77 is

(Zidy -y 2ig) ~ Diry(p(0;)v1(6;),...,0(0;)v,(0,))

G ~ DP (v, Go),

and the thesis follows. O



Online appendix

E Additional Results

E.A Survey design
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Figure D-2: Number of respondents for H1 output growth surveys
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Figure D-3: SPF survey participation by respondent
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Figure D-4: Percentage of respondents for H2 output growth surveys placing positive

probability on either one open bin or both
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Figure D-5: Percentage of respondents for H2 inflation surveys placing positive probability

on either one open bin or both
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E.B Heterogeneity in subjective uncertainty

Figure D-6: Subjective uncertainty by individual respondent: Q1
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Figure D-8: Subjective uncertainty by individual respondent: Q4
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Figure D-9: Subjective uncertainty by individual respondent: IQRs
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E.C Subjective uncertainty and forecast accuracy

Figure D-11: Subjective Uncertainty and Forecast Accuracy: Mean vs Point Predictions
Output Growth Inflation
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Figure D-12: Subjective Uncertainty and Forecast Accuracy: Different Samples
Output Growth Inflation
1982-2018
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Figure D-13: Subjective Uncertainty and Forecast Accuracy: Using Std2
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Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-
curacy? Additional Results (Unweighted)

Figure D-14: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects for both Mean and Point Forecasts
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Figure D-15: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1982-2018 Sample
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Figure D-16: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1982-2018 Sample
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Figure D-17: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2021 Sample
No Fixed Effects Time Fixed Effects
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Figure D-18: Do Differences in Subjective Uncertainty Map into Differences in Forecast
Accuracy? Inflation; 1992-2021 Sample
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Figure D-19: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2018 Sample
No Fixed Effects
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Figure D-20: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Inflation; 1992-2018 Sample
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Do Differences in Subjective Uncertainty Map into Differences in Forecast Ac-

curacy? Additional Results (Weighted)

Figure D-21: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Mean vs Point Projections—Weighted
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Figure D-22: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects—Weighted
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Figure D-23: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Regressions with Fixed Effects for both Mean and Point Forecasts—Weighted
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Figure D-24: Do Differences in Subjective Uncertainty Map into Differences in Forecast
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Figure D-25: Do Differences in Subjective Uncertainty Map into Differences in Forecast
Accuracy? Inflation; 1982-2018 Sample—Weighted
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Figure D-26: Do Differences in Subjective Uncertainty Map into Differences in Forecast

Accuracy? Output Growth; 1992-2021 Sample—Weighted
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Figure D-27: Do Differences in Subjective Uncertainty Map into Differences in Forecast
Accuracy? Inflation; 1992-2021 Sample—Weighted
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Figure D-28: Do Differences in Subjective Uncertainty Map into Differences in Forecast
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Figure D-29: Do Differences in Subjective Uncertainty Map into Differences in Forecast
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