Rational Inattention in Macroeconomics

Bartosz Maćkowiak
European Central Bank and CEPR

Indiana University, March 4, 2021

The views expressed here are solely those of the author and do not necessarily reflect the views of the ECB.
Introduction: Rational inattention in macroeconomics

- RI is the idea that people cannot process all available information and they allocate attention optimally.

- It is a simple, plausible assumption that may help us close the gap between benchmark macro models and the data.

- Solving RI problems in dynamic models and solving DSGE models with RI is challenging, but the literature has made significant progress.
Plan of this talk

- Analytical results in Maćkowiak and Wiederholt (2009).
- Analytical results in Maćkowiak, Matějka, and Wiederholt (2018).
- RBC model with RI in Maćkowiak and Wiederholt (2020).
- Other recent advances in dynamic RI.

\[
\min_{b,c} E[(x_t - x_t^*)^2]
\]

subject to

\[
x_t^* = \sum_{s=0}^{\infty} a_s \varepsilon_{t-s}
\]

\[
x_t = \sum_{s=0}^{\infty} b_s \varepsilon_{t-s} + \sum_{s=0}^{\infty} c_s \psi_{t-s}
\]

\[
\lim_{T \to \infty} \frac{1}{T} \left[H(x_t^T) - H(x_t^T | x^T) \right] \leq \kappa
\]

\[\varepsilon_t, \psi_t \text{ independent Gaussian white noise}\]
Suppose x^*_t follows an AR(1) process, $a_s = \rho^s a_0$.

- Then

 $$b_s = \left[\rho^s - \frac{1}{2^2\kappa} \left(\frac{\rho}{2^2\kappa} \right)^s \right] a_0, \quad c_s = \sqrt{\frac{1}{2^2\kappa} \frac{2^{2\kappa} - 1}{2^{2\kappa} - \rho^2} \left(\frac{\rho}{2^2\kappa} \right)^s} a_0$$

- Also,

 $$x_t = E [x^*_t | \mathcal{I}_t]$$

 $$\mathcal{I}_t = \mathcal{I}_{t-1} \cup \{s_0, s_1, \ldots, s_t\} \quad \text{with} \quad s_t = x^*_t + \psi_t$$
Attention problem in MMW (2018)

\[
\min_{A, B, \Sigma, \psi} E[(x_t - x_t^*)^2]
\]

subject to

\[
x_t^* = \phi_1 x_{t-1}^* + \ldots + \phi_p x_{t-p}^* + \epsilon_t + \theta_1 \epsilon_{t-1} + \ldots + \theta_q \epsilon_{t-q}
\]

\[
x_t = E[x_t^* | I_t]
\]

\[
I_t = I_{t-1} \cup \{s_0, s_1, ..., s_t\}
\]

\[
s_t = A x_t^* + B \bar{\epsilon}_t + \psi_t
\]

\[
\lim_{T \to \infty} \frac{1}{T} [H(x_t^T) - H(x_t^T | s_t^T)] \leq \kappa
\]

Any optimal signal is a signal about the state vector

\[\tilde{\zeta}_t = (x_t^*, \ldots, x_{t-(p-1)}^*, \varepsilon_t, \ldots, \varepsilon_{t-(q-1)})' \]

The optimum can be attained with a one-dimensional signal.

Special case: If \(x_t^* = \phi_1 x_{t-1}^* + \phi_2 x_{t-2}^* + \varepsilon_t \), the optimal signal is

\[s_t = g_1 x_t^* + g_2 x_{t-1}^* + \psi_t \quad \text{with} \quad g_2 \neq 0 \]

which can also be written

\[s'_t = \omega x_t^* + (1 - \omega)(\phi_1 x_t^* + \phi_2 x_{t-1}^*) + \psi'_t \quad \text{with} \quad 1 - \omega \neq 0 \]
Solving for an optimal signal

1. **State-space representation:**

\[
\xi_{t+1} = F\xi_t + \nu_{t+1}
\]

\[
s_t = g'\xi_t + \psi_t
\]

2. **Attention constraint:**

\[
H(\xi_t|s^{t-1}) - H(\xi_t|s^t) \leq \kappa
\]

where the left-hand side equals

\[
\frac{1}{2} \log_2 \left(\frac{\det \Sigma_1}{\det \Sigma_0} \right) = \frac{1}{2} \log_2 \left(\frac{g'\Sigma_1 g}{\sigma^2_\psi} + 1 \right)
\]

\[\Sigma_0 \ (\Sigma_1)\] is the steady-state conditional variance-covariance matrix of \(\xi_t\) given \(I_t \ (I_{t-1})\).
3. Optimization problem:

\[
\min_{g, \sigma^2_\psi} \Sigma_0^{(1,1)} \quad \text{subject to} \quad \frac{1}{2} \log_2 \left(\frac{g' \Sigma_1 g}{\sigma^2_\psi} + 1 \right) = \kappa
\]

and the usual Kalman filter equations for \(\Sigma_0 \) and \(\Sigma_1 \).

Or let \(\lambda > 0 \) be the marginal cost of attention and solve

\[
\min_{g, \sigma^2_\psi} \Sigma_0^{(1,1)} + \frac{\lambda}{2} \log_2 \left(\frac{g' \Sigma_1 g}{\sigma^2_\psi} + 1 \right)
\]

subject to the Kalman filter equations for \(\Sigma_0 \) and \(\Sigma_1 \).
A continuum of firms indexed by $i \in [0, 1]$.

Production: $Y_{it} = e^{a_t} K_{it-1}^\alpha L_{it}^\phi N_i^{1-\alpha-\phi}$ \quad $\alpha \geq 0$, $\phi \geq 0$, $\alpha + \phi < 1$

Capital accumulation: $K_{it} - K_{it-1} = I_{it} - \delta K_{it-1}$ \quad $\delta \in (0, 1]$

Dividends: $D_{it} = Y_{it} - W_t L_{it} - I_{it}$

TFP: $a_t = \rho a_{t-1} + \sigma \varepsilon_{t-h}$ \quad $\varepsilon_t \sim N(0, 1)$, $\sigma > 0$, $\rho \in (0, 1)$

$h = 0$ is a standard productivity shock

$h \geq 1$ is a news shock
A continuum of households indexed by \(j \in [0, 1] \).

Preferences:
\[
U (C_{jt}, L_{jt}) = \frac{C_{jt}^{1-\gamma} - 1}{1-\gamma} - \frac{L_{jt}^{1+\eta} - 1}{1+\eta} \quad \gamma > 0, \ \eta \geq 0, \ \beta \in (0, 1)
\]

Budget:
\[
V_t Q_{jt} - V_{t-1} Q_{jt} = W_t L_t + D_t Q_{jt-1} - C_{jt} \quad D_t = \int_0^1 D_{it} \, di
\]

Market clearing: The wage adjusts so that labor demand equals labor
supply \((\int_0^1 L_{it} \, di = \int_0^1 L_{jt} \, dj)\) and the price of a share adjusts so that
demand for shares equals supply of shares \((\int_0^1 Q_{jt} \, dj = 1)\).
Definition of equilibrium

- In periods $t = 0, 1, 2, \ldots$
 - Firms maximize given their information sets.
 - Households maximize given their information sets.
 - Markets clear.
 - Agents’ perceived law of motion of the economy equals the actual law of motion of the economy (rational expectations).

- In period $t = -1$, each firm chooses an optimal signal process.

- In period $t = -1$, firms receive a long sequence of signals such that the prior variance-covariance matrix of the state vector in $t = 0$ equals the steady-state prior variance-covariance matrix of the state vector.
Attention problem of a firm (no capital)

\[
\min_{g, \sigma^2_\psi} \sum_{t=0}^{\infty} \beta^t \left\{ E_{i,-1} \left[\frac{\phi (1 - \phi)}{2} (l_{it} - l^*_{it})^2 \right] + \lambda I (\xi_t; s_{it} | \mathcal{I}_{it-1}) \right\}
\]

subject to

\[
\begin{align*}
\xi_{t+1} &= F \xi_t + v_{t+1} \\
l_{it} &= E [l^*_{it} | \mathcal{I}_{it}] \\
\mathcal{I}_{it} &= \mathcal{I}_{it-1} \cup \{ s_{it} \} \\
s_{it} &= g' \xi_t + \psi_{it}
\end{align*}
\]
Labor to a news shock ($\alpha = 0$, $h = 1$)
Attention problem of a firm

\[x_t = \left(I_{it} - \frac{k_{it}}{1 - \phi} k_{it-1} \right) \quad x_t^* = \left(\frac{1}{1 - \alpha - \phi} \left[\frac{E_t a_{t+1} - \phi E_t w_{t+1}}{1 - \beta (1 - \delta)} \right] - (1 - \phi) \frac{\gamma E_t (c_{t+1} - c_t)}{1 - \beta (1 - \delta)} \right) \]

\[
\min_{G, \Sigma \psi} \sum_{t=0}^{\infty} \beta^t \left\{ \frac{1}{2} (x_t - x_t^*)' \Theta (x_t - x_t^*) \right\} + \lambda I \left(\zeta_t; s_{it} | \mathcal{I}_{it-1} \right) \\
\text{subject to}
\]

\[\zeta_{t+1} = F \zeta_t + \nu_{t+1} \]

\[x_{it} = E \left[x_{it}^* | \mathcal{I}_{it} \right] \]

\[\mathcal{I}_{it} = \mathcal{I}_{it-1} \cup \{ s_{it} \} \]

\[s_{it} = G' \zeta_t + \psi_{it} \]
Parameter values

- Technology:
 - production function: $\alpha = 0.33$, $\phi = 0.65$
 - capital accumulation: $\delta = 0.025$
 - TFP: $\rho = 0.9$, $\sigma = 0.01$

- Preferences:
 - $\gamma = 1$, $\eta = 0$, $\beta = 0.99$

- Marginal cost of attention:
 - We set $\lambda = (1/10,000)$ times steady-state output.
 - For this value of λ, the equilibrium expected per period profit loss from suboptimal actions equals $(4/100,000)$ of steady-state output.
 - Following Coibion and Gorodnichenko (2015), we also regress the ex-post average forecast error on the ex-ante average forecast revision in SPF output forecast data and in simulated output forecast data. The regression coefficients are 0.76 (0.30) and 1.07, respectively.
Figure 3: Impulse responses to a productivity shock

- **Labor**
 - Perfect information equilibrium
 - Rational inattention equilibrium

- **Investment**
 - Perfect information equilibrium
 - Rational inattention equilibrium

- **Output**
 - Perfect information equilibrium
 - Rational inattention equilibrium

- **Capital**
 - Perfect information equilibrium
 - Rational inattention equilibrium

- **Consumption**
 - Perfect information equilibrium
 - Rational inattention equilibrium

- **Conditional expectation of productivity**
 - Perfect information equilibrium
 - Rational inattention equilibrium
Table 1: Business cycle statistics

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Perfect information</th>
<th>Rational inattention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative standard deviation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>σ_c/σ_y</td>
<td>0.55</td>
<td>0.56</td>
<td>0.59</td>
</tr>
<tr>
<td>σ_l/σ_y</td>
<td>0.92</td>
<td>0.66</td>
<td>0.57</td>
</tr>
<tr>
<td>σ_i/σ_y</td>
<td>2.88</td>
<td>3.05</td>
<td>2.93</td>
</tr>
<tr>
<td>σ_a/σ_y</td>
<td>0.52</td>
<td>0.46</td>
<td>0.51</td>
</tr>
<tr>
<td>Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\rho_{c,y}$</td>
<td>0.78</td>
<td>0.78</td>
<td>0.81</td>
</tr>
<tr>
<td>$\rho_{l,y}$</td>
<td>0.85</td>
<td>0.85</td>
<td>0.83</td>
</tr>
<tr>
<td>$\rho_{i,y}$</td>
<td>0.90</td>
<td>0.93</td>
<td>0.92</td>
</tr>
<tr>
<td>$\rho_{a,y}$</td>
<td>0.40</td>
<td>1.00</td>
<td>0.99</td>
</tr>
<tr>
<td>First-order serial correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δc</td>
<td>0.27</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>Δl</td>
<td>0.41</td>
<td>-0.06</td>
<td>0.46</td>
</tr>
<tr>
<td>Δi</td>
<td>0.35</td>
<td>-0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>Δy</td>
<td>0.30</td>
<td>-0.05</td>
<td>0.13</td>
</tr>
<tr>
<td>Δa</td>
<td>-0.06</td>
<td>-0.05</td>
<td>-0.05</td>
</tr>
</tbody>
</table>

Model: Unconditional moments computed from the equilibrium MA representation of each variable.
Figure 4: Impulse responses to a news shock ($h = 2$)
Adding RI by households

To begin: no capital, no trade in shares. When households become subject to RI:
- they supply less labor on impact of a positive productivity shock.
- they supply more labor on impact of a positive news shock.

Introduce capital. When households become subject to RI, they consume less on impact of a positive productivity (news) shock – they save more, and they supply more labor.
Figure 6: Additional impulse responses

Signal to a news shock ($h = 4$)

Labor to a productivity shock

Labor to a news shock ($h = 1$)

Share price to a news shock ($h = 4$)

Labor to a news shock ($h = 6$)

Labor to a news shock ($h = 6$)
Literature: Recent advances in dynamic RI

- Steiner, Stewart, and Matějka (2017).
- Jurado (2020).
- Miao, Wu, and Young (2020).
Conclusions

- In a dynamic model, RI causes a combination of delay in actions and forward-looking actions.

- In a neoclassical economy, RI induces persistence and helps produce comovement after news shocks.

- The recent advances suggest that RI in macroeconomics is an exciting research area.