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Abstract

Public goods problems are prevalent in economics and are challenging to resolve.

In this study, we investigate a novel continuous-time incremental commitment mecha-

nism. Within a fixed time period, people can choose when to stop their contributions

from increasing exogenously, and their actions are observed by others. We show

both theoretically and experimentally that it is a very effective mechanism to help

improve contribution. Moreover, we compare this mechanism with other mechanisms

under similar real-time environment, and find that the mechanism becomes ineffective

when the incremental commitment feature is absent. Our findings can be potentially

extended to other social dilemma situations.
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1 Introduction

Public goods games are very prevalent in economics, and their desired outcome requires

people to contribute to a public pool efficiently. For example, building a dam that benefits

people living around it requires everyone to contribute; fighting global warming problem

requires all countries to reduce their carbon emissions. Yet, it is a challenging problem,

because not contributing to the public good is in everyone’s private interest and is sup-

ported by Nash equilibrium. Many experimental studies confirm that contributions to

public goods tend to converge to a very low level once people gain experience playing the

game.1 On the other hand, many studies show that some mechanisms can help to improve

contributions to public goods.2 These mechanisms may involve punishment or reward

institutions, endogenous sorting partners, or pre-game communication, etc.3 In this study,

we introduce a novel incremental commitment mechanism in continuous time.

The incremental commitment mechanism works as follows: within a fixed period of

time, the contribution of each player is monotonically increased over time by an exogenous

institution, and players choose when to stop their contribution from increasing. Once a

player stops, the others can observe it in real-time.4 Each player’s stopping decision is

irreversible, and it determines one’s contribution to the public goods game: the earlier one

stops, the less she contributes.

Such a mechanism is worth investigating for both theoretical and empirical reasons.

Theoretically, the incremental commitment setup enables players who are conditional

cooperators to contribute only if others contribute as well. Moreover, under the continuous-

time setup, it is intuitive to conjecture that players may forego a small amount of loss

if they choose to stop only after observing others’ stopping actions, which is consistent

with the intuition of ε-equilibrium. Together, this mechanism potentially induces high

contribution among players. Empirically, there are many economic situations in which

we can implement such a mechanism. For example, if countries want to decrease each

other’s nuclear warhead, it maybe easier to achieve so if they decrease their own warhead

bit by bit at the same time. Or, if a few neighbors are to donate to a public good, they may

1See Andreoni (1988), Isaac and Walker (1988a), Isaac and Walker (1988b), among others.
2There are many underling reasons for why people can reach high contribution in public goods game,

including kindness, conditional cooperation, etc.; see Andreoni (1995), Fischbacher et al. (2001), Fischbacher

and Gächter (2010), among others.
3See Chaudhuri (2011) for a survey.
4This phase is similar to the Dutch auction but in reversed direction, in that there is a clock and each

person can choose when to stop increasing (decreasing) one’s own contribution (bidding price).
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achieve so by slowly increasing one’s own donation, conditioning on observing incremental

donation of others.

In this study, we investigate whether such an incremental commitment mechanism is

effective in a four-player linear public goods game with a marginal public-good contribu-

tion rate of 0.4. In order to understand if real-time (or so continuous-time) monitoring

itself is sufficient to boost contribution, we implement two other mechanisms under real-

time setting. The first is a cheap talk setup, in which players have one minute to send

announcements of their intended actions before the game. During this minute, they can

send announcements as many times as they want to, and the latest announcement is always

perfectly observed by the entire group. After this minute, players choose their contribu-

tions in the game, and their choices are not constrained by their previous announcements.

The second setup is called cheap talk with final commitment. This setup is very similar

to the cheap talk one, and the only difference is that players’ last announcements in

the one minute become their actual contribution in the game. Finally, the incremental

mechanism also has a one-minute phase, during which contribution levels exogenously

increase over time, and players can choose when to stop increasing their contributions.

The commitment level is lowest in the cheap talk setup, and highest in the incremental

commitment setup. And by comparing all these setups, we can learn the essential factors

needed to induce contribution under real-time monitoring. Finally, we also include the

baseline game without any mechanisms as a control setup.

Theoretically, Nash equilibrium predictions are the same for all these four setups.

That is, players contribute zero to the public goods. However, since the decision time is

continuous in the incremental commitment setup, we apply ε-equilibrium to make the

theoretical predictions for this mechanism. We find that, with standard preferences, in

equilibrium one player stops contributing at the very beginning of the clock, whereas the

other three players have a near dominant strategy to continue contributing unless someone

else stops. The intuition is that, by keeping contributing when there are still three players,

the total return rate is 1.2 (0.4×3); however, if one stops contributing, he anticipates that

the other two will follow immediately, and the return rate of the private account is only

1.0. Furthermore, when players are sufficiently inequality averse, it is a near dominant

strategy for each player to keep contributing unless one player stops; that is, in equilibrium

everyone may contribute fully to the public goods.5 In summary, ε-equilibrium predicts

that it is possible to sustain high contribution level in the incremental commitment setup,

5See Fehr and Schmidt (1999), who first introduce inequality aversion in the economic literature.
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especially when players are sufficiently inequality averse. However, there are many other

equilibria in which players fail to contribute as much. Therefore it remains an empirical

question which equilibria will be selected.

We bring the four setups to the laboratory as four between-subject treatments. In all

treatments, subjects are assigned to a fixed matching group of eight, and are randomly

divided into two groups of four players to play the public goods game. They play the

same game for 20 rounds, and in each round they are randomly re-matched within their

matching group. Note that, random matching is a more challenging setup compared to

fixed matching, because players cannot build reputation. Arguably, it is more difficult to

achieve high contribution level under random-matching.6 We use this design as we want

to tease out the effect of reputation, and to make the game comparable to a one-shot game.

The details of each treatment are exactly the same as the setup described before.

The experimental results show that in the baseline treatment, contributions converge to

zero over time. In the cheap talk treatment, subjects tend to make announcements of high

contributions, but then deviate from their announcements in the game; contributions also

converge to zero over time. In the cheap talk with final commitment treatment, subjects

start by making announcements of high contributions, but tend to announce a much lower

level by the end of the one minute, yielding a similar pattern to the other two treatments.

Finally, in the incremental commitment treatment, though contribution levels are not

different from the other three treatments in the first round, they increase over time and

reach about 75% of the maximal level by the last few rounds. We further find that the

behavior patterns are mostly consistent with the predictions by the ε-equilibrium with

sufficiently strong inequality aversion, and most subjects tend to use the near dominant

strategy, in which they keep contributing until another group member stops. Note that

the experimental results are not trivial, because there are many other equilibria in which

contributions are low. This result suggests that this mechanism and its underlying near

dominant strategy is behaviorally obvious for the subjects. In sum, these experimental

results indicate that, under real-time monitoring, cheap talk alone, with or without final

commitment, is not sufficient to boost contribution. Incremental commitment, however,

demands a higher level of commitment and is necessary to induce contribution.

6For example, Fehr and Gächter (2000) find that punishment options increase contributions in both

partner-matching and stranger-matching, but the contributions reach a higher level under partner matching.

Walker and Halloran (2004) find that under random-matching, neither rewards nor sanctions have any

significant impact on contributions, suggesting that repeated interactions and the consequent dynamics

have an important role in sustaining cooperation with punishments.
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The paper is organized as follows. Section 2 discusses the related literature. Section

3 presents the basic setup and the theoretical predictions. Section 4 introduces the

experimental design and procedures. Section 5 provides the results. Section 6 concludes.

2 Related literature

There are a large amount of experimental studies on public-goods games; see Ledyard

(1995), Chaudhuri (2011) for two critical surveys of public goods experiments. There are

three established facts in these studies. First, subjects contribute more than the theoretical

prediction in one-shot games or at the beginning of the repeated games. Second, the

contributions decline steadily over time to the Nash equilibrium predictions under both

fixed partnership and random re-matching. Third, most people are willing to contribute if

their partners contribute (Fischbacher et al. 2001).

Later studies demonstrate many effective mechanisms to help achieve high contribu-

tion in public-goods games. First, allowing punishment or reward can largely improve

contribution, especially under fixed-partnership (e.g., Fehr and Gächter 2000, Masclet

et al. 2003, Walker and Halloran 2004, Gunnthorsdottir et al. 2007, Nikiforakis 2008).

Second, pregame communication, especially free-format communication and face-to-face

communication, can improve contribution (e.g., Isaac and Walker 1988a, Wilson and Sell

1997, Bochet et al. 2006, Denant-Boemont et al. 2011, Haruvy et al. 2017). Third, when

subjects can choose their partners based on past behaviors, or when they can endogenously

sort into different groups, they contribute more compared to exogenously determined

group composition (e.g., Gächter and Thöni 2005, Gunnthorsdottir et al. 2007). Our cheap

talk treatment falls into the second category, especially related to Bochet et al. (2006) and

Denant-Boemont et al. (2011). We differ from them in that our design allows subjects to

make announcements as many times as they want in a one-minute pregame stage. This

allows us to tease out the effect of cheap talk under real-time setting, compared to the

incremental commitment treatment.

There are a handful of experimental papers with real-time monitoring but in different

games compared to ours. Deck and Nikiforakis (2012) study how real-time monitoring

affects behaviors in a minimum-effort coordination games. In a one-minute pregame

phase, subjects can choose their actions and change it freely at any time; these actions can

be either perfectly or imperfectly observed by the other group members. Our cheap talk

with final commitment treatment is similar to their perfect monitoring treatment. They
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find that when subjects can perfectly monitor choices of all the other group members,

efficient coordination can be largely achieved. Avoyan and Ramos (2020) also introduce a

one-minute monitoring phase in a minimum-effort game, but subjects in their game only

have the possibility to revise their actions with an exogenously determined probability.

They find that when the opportunity of revisions is probabilistic, it serves as commitment

and induces coordination at the Pareto optimal equilibrium. Moreover, they further test a

cheap talk mechanism, which only differs in that the last actions in the real-time stage are

nonbinding. They find that such a cheap talk mechanism under real-time monitoring is

not as effective as the mechanism with commitment, but is somewhat effective compared

to the baseline. These two studies show that, real-time monitoring is very effective in

minimum-effort games, especially when the actions in the monitoring stage are binding.

This raises questions on whether such mechanisms are sufficient to improve contribution

in public goods games. The challenge is that, in public goods games the Pareto efficient

outcome is not a Nash equilibrium. Therefore, it is arguably more difficult to achieve such

an outcome in public goods games compared to minimum effort games.

Our mechanism is also related to experimental studies of continuous games. Friedman

and Oprea (2012) first study a two-person continuous time prisoner dilemma game, in

which players receive flow payoffs accumulated over 60 seconds. They find that subjects

reach very high cooperation rate in the continuous dilemma. Later, Oprea et al. (2014)

extend the same payoff structure to a public goods game, and increases the length of the

payoff accumulation stage to 10 minutes. They find that the effect of continuous game

found in prisoner dilemma game is muted in the public goods game. But when adding

communication in the continuous game setting, subjects contribute at very high level.

There are two major differences between the games in Friedman and Oprea (2012) and

Oprea et al. (2014): first, the number of players increases from 2 to 4; second, the strategy

space changes from binary to the entire contribution interval. Both differences potentially

make it harder for players to sustain cooperation.7 Compared to the continuous public

goods game in Oprea et al. (2014), our incremental commitment mechanism also allows

a continuous time setup, but is different in two fundamental ways: first, our game is

not a continuous game, because the payoffs are not accumulated over time; second, our

mechanism provides a stronger force for players to condition their actions on the other

players in the group, as players cannot revise their contribution to a lower level over time.

7See more experimental work on continuous game in Bigoni et al. (2015), Calford and Oprea (2017) and

Leng et al. (2018), among others.
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The most relevant work to ours are experimental studies that implement public goods

games with real-time monitoring. Dorsey (1992) is the first paper that introduces real-time

monitoring in a public goods game. In a one-minute stage, subjects in the irreversible treat-

ment can only increase their contribution level, and their actions are perfectly monitored

by others. They find that such an irreversible mechanism can prevent contribution from

rapid decay, whereas a reversible condition fail to do so. Kurzban et al. (2001) replicate the

design of Dorsey (1992) and study the effect of different information disclosure. They pro-

vide information of either the highest contribution in a group or the lowest contribution.

They find that only the combination of providing lowest contribution and the irreversible

setting can eliminate the decay trend of contribution. Later, Tan et al. (2015) further

extend the study of Dorsey (1992) by introducing the opposite version of the irreversible

condition, in which each subject’s contribution is set at the maximal contribution in the

start and subjects can only decrease their contribution over time. They find that the

irreversible condition is only effective among inexperienced subjects, whereas the opposite

condition is effective only among experienced subjects. Finally, based on the theoretical

work of Marx and Matthews (2000), Duffy et al. (2007) study how multiple contribution

rounds affect contribution, and they find that subjects contribute more in a dynamic

public good game, both with and without a positive completion benefit, compared to a

static one.8 Our incremental commitment mechanism is similar to these studies in that

subjects can only increase their contribution, and therefore shares the spirit of gradualism

in contribution. But our mechanism differ from them in two ways: first, players only

choose when to stop their contribution from increasing exogenously, instead of choosing

whether, when and how much they want to increase their contribution. This simplifies the

decision subjects have to make. Second, our mechanism works in continuous time, and

by applying ε-equilibrium in such a continuous-time setup, high contribution levels can

always be supported regardless of the behavioral types of the players.9

Finally, the theoretical framework of our incremental commitment mechanism applies

the concept of ε-equilibrium, which has been studied in theoretical papers such as Radner

(1986), Simon and Stinchcombe (1989), and Bergin and MacLeod (1993).10

8Choi et al. (2008) also find that people contribute more in a dynamic voluntary contribution game,

and their experimental results are best explained by symmetric Markov perfect equilibrium and Quantal

response equilibrium.
9Behavioral types refer to conditional cooperators, free-rides, etc.

10Many experimental studies of continuous games, such as Friedman and Oprea (2012), Calford and

Oprea (2017), also apply ε-equilibrium to construct strategies and make theoretical predictions.
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3 Theoretical background

In this section, we investigate the impact of each mechanism in a four-player public goods

game. In the normal-form public goods game G, each player chooses their contribution

level gi ∈ [0,20], and their payoffs are described in the function below.

πi = 20− gi + 0.4
4∑
j=1

gj (1)

3.1 Baseline

In the baseline game, players choose their contribution level simultaneously. It is a domi-

nant strategy to choose zero contribution. Therefore, there is a unique Nash equilibrium,

in which all players choose zero contribution.

Proposition 1 (Baseline equilibrium). In the baseline game, the Nash equilibrium strategy of

each player i is gi = 0.

3.2 Cheap talk

In the cheap talk game, players choose their contribution level simultaneously after the

one-minute cheap talk phase. No matter what they say in the cheap talk phase, it is

still a dominant strategy to choose zero contribution. Therefore, there is a unique Nash

equilibrium, in which all players choose zero contribution.

Proposition 2 (Cheap talk equilibrium). In the cheap talk game, the Nash equilibrium strategy

of each player i is gi = 0.

3.3 Cheap talk with final commitment

In the cheap talk game with final commitment, players send their intended actions in the

one-minute phase, and their last intended action becomes their final contribution level.

We use mi to represent the intended actions sent by player i, and mi is a function of time.

Suppose that all the players have a reaction time τ > 0, which denotes the minimal time

it takes a player to react after seeing a change in others’ intended actions. Let t ∈ [0,1]

denote the time within the one-minute interval. We argue that, at t = 1− τ or later, it is a

dominant strategy to send an intended action of zero contribution (mi = 0). The reason is

the following: no matter what the others’ strategies are, at t = 1−τ (or later) the remaining

8



time is too short for others to react accordingly. Therefore, choosing zero contribution at

this time is a dominant strategy, no matter what strategies are used by the other players.

On the other hand, it does not matter what intended actions are sent before t = 1 − τ .

Therefore, in this game, in equilibrium all players choose zero contribution by the end of

the one-minute phase.

Proposition 3 (Cheap talk with final commitment equilibrium). In the cheap talk game

with final commitment, in Nash equilibrium, the strategy of each player i has the following form:

mi ∈ [0,1] when t < 1− τ , mi = 0 when t ≥ 1− τ .

The results in Proposition 3 is theoretically equivalent to gi = 0 for all players in

normal-form game G. That is, in equilibrium players contribute zero to the public goods.

3.4 Incremental commitment

In the public goods game with incremental commitment, players choose when to opt out

from increasing their contribution level. Again, let t ∈ [0,1] denote the time within the

one-minute interval. Then a player’s strategy can be represented by his or her opting out

time si , with si ∈ [0,1]. Since each player can perfectly observe other players’ opting out

time (given it’s already happened), we argue that a player’s behavioral strategy depends

both on the time t, as well as other players’ strategies. We can consider such a strategy as

a cutoff strategy, that is, player i will opt out from the contributing phase when t ≥ si or

when sufficient number of players have already opted out, and stay in otherwise.

By backward induction, the last player who opts out from the contributing phase should

opts out immediately after observing the third player opting out, since contributing to the

public goods yields a lower return than keeping to one’s private account. The second last

player should opt out immediately after observing the second player opting out, as the

return of two remaining player’s contributing to public good is still worse than keeping

to one’s private account. For the second player, his optimal opting out time is just a little

bit ahead of the third player planned opting out time, as this way he gains some profit

without affecting the third player. By this logic, the third player also wishes to opt out just

a little bit ahead of the second player. After all, the Nash equilibrium is that all the four

players opt out at the very beginning (si = 0 for all players).

Proposition 4 (Incremental commitment equilibrium). In the incremental commitment

game, the Nash equilibrium strategy of each player i is: si = 0.
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The results in Proposition 4 is theoretically equivalent to gi = 0 for all players in

normal-form game G. That is, in equilibrium players contribute zero to the public goods.

3.4.1 ε-equilibrium

One important feature of the incremental commitment mechanism is that players observe

each other’s strategies in a real-time manner, and can adjust their strategies according

to other players’ strategies very quickly. For example, if player i opts out immediately

after observing that player j just opts out (with a reaction time τ), player i’s payoff is just a

little bit lower than player j, given that τ is very small. This raises the question of whether

ε-equilibrium is a more appropriate solution concept.

Definition 1 (ε-best response). Given the strategy profile P−i of the other players, for player i,

suppose strategy s∗ yields the highest payoff, then all the strategies s̃ such that u(s∗)−u(s̃) ≤ ε
belong to the ε-best responses strategy set Bi,ε(P−i).

Definition 2 (ε-equilibrium). A strategy profile P ∗ is an ε-equilibrium if for any player i, his

strategy in P ∗ belongs to his ε-best response set Bi,ε(P ∗−i).

Applying the ε-equilibrium solution concept to our incremental commitment mecha-

nism yields interesting predictions. This is because when there are three players still in

the contributing phase, as long as these three players all opt out at the same time, a player

can only gain a small payoff by deviating to opting out a little bit earlier. If he deviates to

opt out much earlier than the other two players, they will opt out immediately after and

therefore result in a worse payoff. However, it is not possible for all the four players to

stay in the contributing phase, as when exactly one player opts out, the other three still

find it beneficial to stay in, therefore the fourth player’s dominant strategy is to opt out

at t = 0 and free rides on the other three players. For the other three players, if they opt

out at the same time or with very little time lag, it could become an ε-equilibrium, as

long as ε is sufficiently big. In fact, without knowing the cutoff opting out time of the

other two players, it is a near dominant strategy for each of the three players to stay in the

contributing phase, unless someone else opts out first. We first provide the definition of

“near dominant strategy” below.

Definition 3 (Near dominant strategy). For player i, given any strategy profile P−i of the other

players and the value of ε, if strategy s̃i always belongs to Bi,ε(P−i), then s̃i is a near dominant

strategy for player i.
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Using the concept of near dominant strategy, we characterize the ε−equilibria in the

public goods game with incremental commitment.

Proposition 5 (Incremental commitment ε-equilibria). In the incremental commitment

game, for ε ≥ 24τ , there exists an ε-equilibrium in which one player (call him player 1) has

s1 = 0, and the other three players has the same cutoff strategy K(1), that is, they “Opt out”

when n(−i) ≥ 2, “Stay in” otherwise. For ε ≥ 12τ , there exist ε-equilibria in which one player

has s1 = 0, and the other three players have the same cutoff strategy K(s̃), that is, “Opt out”

when n(−i) ≥ 2 or t ≥ s̃ (0 ≤ s̃ < 1), and “Stay in” otherwise. n(−i) is the number of opted out

players other than oneself.

In the first set of equilibria characterized in Proposition 5, exactly one player opts out

at t = 0, and the other three players use a near dominant strategy, in which they stay in

unless a second player opts out, which means that in their cutoff strategy k(si), we have

s2 = s3 = s4 = 1. In this equilibrium, three players contribute fully to the public goods, and

one player free rides on them.

In the second set of equilibria characterized in Proposition 5, again exactly one player

opts out at t = 0, and the other three players use an identical cutoff strategy. Note that

since the best response set becomes larger with ε-equilibrium, there are more equilbria:

in fact, as long as the three players use a cutoff with very small time lag, it can become

an equilibrium. In this proposition, we only characterize the equilibria in which the

three players use the same strategy, either the near dominant strategy s2 = s3 = s4 = 1, or

s2 = s3 = s4 = s̃ for 0 ≤ s̃ < 1.

3.4.2 Inequality aversion

In the above theoretical analysis, we consider only standard preferences. That is, player

only care for their monetary payoff, and do not care for other factors such as inequality.

In the equilibrium characterized in Proposition 5, there is a strong asymmetry between

the player who opts out at t = 0 and the other three players who opt out at t = 1. In this

equilibrium, one player free rides on the other three players. Current empirical evidence

on inequality aversion suggest that it is challenging for such asymmetric equilibrium to

occur; as long as the remaining three players are sufficiently inequality averse, they might

rather opt out as soon as the first player opts out, and sacrifice their potential monetary

payoff to reach a more fair result.

In this section, we consider the theoretical predictions if players are (sufficiently)

inequality averse. We use the utility function from Fehr and Schmidt (1999) as follows.
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We assume that all the players have the same inequality averse level α, which captures

how one dislikes that others receiver a higher monetary payoff than himself.11

Ui(x) = xi −α
∑
j,i

1
n− 1

max {xj − xi ,0} (2)

Consider the equilibrium characterized in Proposition 5. For what values of α will

this equilibrium break down? After the first player, the free rider, opts out from the

contributing phase immediately, the remaining players face a trade-off by keep increasing

their contributing level: a higher contributing level by the three players increases their

monetary payoffs effectively, but also enlarges the payoff difference between them and the

free rider. The rate of the former is 3*0.4, and the payoff difference rate is 1 (since the free

rider enjoys the same benefit from the public goods, but he can also receives extra payoff

from his own private account). The sum of the marginal gain by staying in is presented in

the equation below:

∂Ui(x)
∂t

= 20 ∗ 0.4 ∗ 3−α ∗ 1
3
∗ 20 ∗ 1 (3)

And if one deviates to opting out, he will contribute his endowment to his private

account at the rate of 1, which is presented in the equation below:

∂Ui(x)
∂t

= 20 ∗ 1 (4)

The equilibrium in Proposition 5 will break down when staying in (equation 3) has a

lower value than opting out (equation 4), which yields the following condition:

α > 0.6 (5)

If players are sufficiently inequality averse (α > 0.6), all the asymmetric equilibria

in Proposition 5 break down. This suggests that when one player opts out from the

contributing phase, all the other three players will also opt out soon (the exact time

depends on the value of ε). As a result, it is a near dominant strategy for all the players

to opt out at t = 1 unless someone else opts out earlier. We therefore characterize the

following equilibrium with sufficiently strong inequality aversion.

11Note that in Fehr and Schmidt (1999), they also consider the dis-utility if oneself receives a higher

monetary payoff than others. But in our analysis, we simplify the utility function and only consider the

dis-utility when one receives a lower monetary payoff than others. We further simply the parameter α to be

homogeneous among players. Imposing these two assumptions enables us to abstract away from the other

possible variations and derive the essential intuition of inequality aversion.
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Proposition 6 (Incremental commitment ε-equilibria with inequality aversion). In the

incremental commitment game with players that are sufficiently inequality averse (α > 0.6), for

ε ≥ 24τ + 20ατ
3 , there exists an ε-equilibrium in which all players use the same cutoff strategy

K(1), that is, “Opt out” when n(−i) ≥ 1 and “Stay in” otherwise. For ε ≥ 12τ , there exist

ε-equilibria in which all players use the same cutoff strategy K(s̃), that is, “Opt out” when

n(−i) ≥ 1 or t ≥ s̃ (0 ≤ s̃ < 1), and “Stay in” otherwise. n(−i) is the number of opted out players

other than oneself.

In the first set of equilibria characterized in Proposition 6, all players use a near

dominant strategy, in which they stay in unless one player opts out, which means that in

their cutoff strategy k(si), we have s1 = s2 = s3 = s4 = 1; or, in other words, theoretically

equivalent to g1 = g2 = g3 = g4 = 20. In this equilibrium, all players contribute fully to the

public goods.

In the second set of equilibria characterized in Proposition 6, players use a symmetric

strategy, that is, their cutoff strategies are the same s1 = s2 = s3 = s4 = s̃ for any 0 ≤ s̃ < 1.

Again, note that as long as the four players use a cutoff with very small time lag, it can

become an equilibrium. In this proposition, we only characterize the equilibria in which

the four players use the same strategy, hence, the symmetric equilibria.

In summary, our incremental commitment mechanism has the same Nash equilibrium

predictions compared to the the baseline game and the other two mechanisms. In all

these Nash equilibrium predictions, players contribute zero to the public goods. In con-

trast, when applying the ε-equilibrium solution concept to the incremental commitment

mechanism, we find that (at least some) players have a near dominant strategy, in which

they keep increasing their contribution to the full extent, unless enough players opt out.

With strong inequality aversion, we even find that it is possible for all player to reach full

contribution. This is a very promising theoretical result. In the remaining parts of the

paper, we implement these mechanisms to the laboratory to see if we can find empirical

support.

4 Experimental design and procedures

4.1 Treatment design

In the experiment, we employ a between-subject design to implement the public goods

game with four different mechanisms as described in Section 3, namely the Baseline
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treatment (B), the Cheap talk treatment (C), the Cheap talk with final commitment

treatment (CFC), and the Incremental commitment treatment (IC).

Each subject participates in only one of the treatments. In the experiment, all subjects

play the same public good game for 20 rounds.12 In this game, subjects choose their

contribution level between 0 and 20 (any number is allowed). To make the experimental

results more comparable to theoretical predictions of the one-shot game, we adopt a

random matching protocol in all treatments. Subjects are randomly assigned to a fixed

matching group of eight. In each of the 20 rounds, the eight subjects within a matching

group are randomly divided into two four-player groups to play the experimental game.

Thus, subjects cannot form long-term partnerships or build reputation in their matching

group because they cannot identify one another.

The four treatments differ in the mechanisms before playing the public goods game.

In the Baseline treatment, subjects directly choose their public goods contribution si-

multaneously. In the Cheap talk treatment, subjects first experience a cheap-talk stage

before choosing their contribution levels. At this stage, they have one minute to announce

their intended contribution levels. Subjects can announce and update their intended

contribution at any time and for as many times as they want to. Each time a subject makes

an announcement, the group can see the announcement immediately (in real-time); only

the latest announcement of each subject is shown at any time of this stage. When this one

minute cheap talk stage ends, subjects can choose their actual contribution level simulta-

neously as in the Baseline, their choices are not constrained by any of their announcements

made in the cheap talk stage. The Cheap talk with final commitment treatment only

differs from the Cheap talk treatment in that, when the one minute stage ends, each

subject’s last announcement becomes their actual contribution level in the public goods

game. Therefore, compared to the Cheap talk treatment, the last announcement in this

treatment serves as a commitment. Finally, in the Incremental treatment, subjects again

enter a one-minute stage. In this minute, each subject’s contribution level endogenously

increases from 0 to 20 in a constant pace. They can choose when to stop from increasing

their own contribution by pushing the “opting out” button at any time; the earlier one

pushes the button, the lower is his contribution level. When a subject presses the “opting

out” button, all subjects in the group can observe it immediately. After a subject opts

out, his contribution level is finalized and determined by the time he opts out, and he

can not go back to the game. In all treatments, at the end of each round, subjects receive

12The game is described by equation 1 in Section 3.
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feedback of the group’s total public goods contribution and their payoff in this round.

Table 1 summarizes the experimental treatments.

Table 1: Summary of treatments

Treatments One-minute stage Choice stage No. of subjects

B N/A nonbinding 24

C announce freely nonbinding 48

CFC announce freely binding 40

IC opt out once binding 48

The goal of the above treatment design is to investigate the effect of “auction-like”

mechanism in treatment IC, and to understand whether cheap talk and commitment alone

can help achieve the effect of such a mechanism. In order to do this, treatment B serves as

the benchmark to see whether contributions converge to zero as theory predicts in this

condition. By comparing the contribution levels in treatment C and B, we can tease out the

effect of cheap talk. Next, by comparing treatment CFC and treatment C, we can see how

final commitment affects contribution. Finally, by comparing treatment IC and treatment

CFC, we can observe the net effect of the IC mechanism through incremental commitment

rather than final commitment and cheap talk.

At the end of the experiment, we administer a short survey, collecting some background

information. 2 out of the 20 rounds are then randomly selected for payment. Subjects earn

experimental currency in points in the experiment, and every point is worth ¥0.5.

4.2 Procedures

The experiment was conducted at the Shanghai University of Finance and Economics.

Chinese subjects were recruited from the subjects pool of the Economic Lab. We ran seven

sessions in total, one session for the Baseline treatment, and two for each of the other

treatments. Treatments were randomized at the session level. Depending on the number

of people showed up at the experiment, 16 or 24 subjects participated per session. In total

160 subjects were recruited, most of whom were undergraduate students from various

fields of studies.

The experiment was computerized using z-Tree and was conducted in Chinese.13 Upon

arrival, subjects were randomly assigned a card indicating their table number and were

13The English translations are provided in Appendix B.
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seated in the corresponding cubicle. Before the experiment started, subjects read and

signed a consent letter to agree to participate in the experiment. All instructions were

displayed on their computer screens. Control questions were conducted to check their

understanding of the instructions. The same experimenters were always presented during

all the experimental sessions.

After finishing the experiment, subjects received their earnings through mobile pay-

ment privately.14 Average earnings were ¥38 (equivalent to around 5 US dollars), including

a show-up fee of ¥15 (around 2 US dollars). Each session lasted between 30 to 45 minutes.

5 Results

5.1 Treatment differences

We first look at how choices differ in each treatment. Figure 1 presents the average contri-

bution level over time for each treatment, respectively. We can see from Figure 1 that, the

contribution level in treatment IC exhibits an increasing pattern over time, and converges

to around 75% of the maximal level. In contrast, contribution levels in treatments B

and C have a declining pattern, and converge toward zero over time. Contribution level

in treatment CFC is more volatile, but overall also exhibits a declining pattern towards

zero. This figure shows that, at a first look, only the incremental commitment mechanism

induces subjects to contribute sufficient amount of their endowment to the public good.

Next, we compare the contribution levels between treatments in greater detail. Table 2

shows the average contribution level in rounds 1-20 and 11-20 by treatment, respectively.

Throughout the 20 rounds, the average contribution level in treatment IC reach 60% of

the maximal level, and increase to above 70% of the maximal level in the second half of

the experiment. By contrast, average contribution levels in treatments B and C are below

15% of the maximal level throughout the 20 rounds, and decline to almost zero in the

second half. Average contribution level in treatment CFC is slightly higher compared to

treatments B and C (about 25% over 20 rounds and 15% in the second half), but still much

lower than that in treatment IC.
14We used Alipay or Wechat pay, according to the preference of each subject, to pay subjects on site.

Subjects confirmed receiving of the payments before leaving the laboratory.
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Figure 1: Average contribution over rounds. The average contribution levels

are calculated by taking average across matching groups.

Table 2: Average contribution in each treatment

B C CFC IC

Rounds 1-20 2.90 2.96 4.92 12.38

(0.91) (1.05) (2.99) (4.58)

Rounds 11-20 1.11 1.08 3.17 14.46

(0.27) (0.82) (3.03) (5.41)

Notes: Each cell shows the all-round average contribution at match-

ing group level. Standard deviations are in parentheses.

We compare all-rounds average contribution between treatments by performing two-

sided Mann-Whitney tests (at matching group level). We find that the contribution level

in treatment IC is significantly higher than in all other three treatments (IC versus B,

p = 0.020; IC versus C, p < 0.01; IC versus CFC, p = 0.029), and differences between any

pairs of treatment B, C and CFC are insignificant (B versus C, p = 0.796; B versus CFC,

p = 0.297; C versus CFC, p = 0.273).

Result 1. Contributions converge to zero in treatments B, C and CFC, but increases over time

and converges to 75% of the maximum level in treatment IC. Subjects contribute significantly

more in IC than in all the other three treatments.
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5.2 Within treatment analysis

In this section, we investigate behavior patterns within each treatment, and test if they are

consistent with the theoretical predictions.

5.2.1 Baseline

In the Baseline treatment, as can be seen from Figure 1 and Table 2, subjects contribute

about 8 out of 20 points to the public goods in the first round, and they contribute less

and less over time, reaching almost zero contribution by the last few rounds. This result

is consistent with previous experimental findings in public goods game with random-

matching (see Ledyard 1995, Chaudhuri 2011).

Result 2. In the Baseline treatment, contribution converges to zero over time.

5.2.2 Cheap talk

In the Cheap talk treatment, as can be seen from Figure 1 and Table 2, subjects contribute

very similar level compared to the Baseline treatment: in the first round, they contribute

about 9 out of 20 points to the public good, and their contributions converge to zero over

time.

Next, we examine the behavior pattern in the Cheap talk treatment. Figure 2 shows

subjects’ last announcements of intended actions in the cheap talk stage, and their actual

contributions in the choice stage. It also shows the corresponding comparison in treatment

CFC, which we will discuss later. We can see that subjects contribute much less than

their last announcements, indicating that subjects tend to deviate downward from their

intended actions. This result suggests that though the real-time cheap talk stage induces

high intended contributions, it fails to boost actual contribution as subjects don’t stick

with their intended actions.

This result is consistent with the results in Bochet et al. (2006). Bochet et al. (2006)

find that when subjects can indicate their intended actions once before playing the public

goods game, both their contribution levels and payoffs are similar to the baseline game.

Though subjects can indicate their intended actions for as many times as they want in our

setting, it is still insufficient to boost cooperation.
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Figure 2: Intentions vs. contribution in treatments C and CFC. The intentions

and contributions levels are calculated at four-player game level.

Result 3. In the Cheap talk treatment, contribution converges to almost zero over time.

Though subjects send high intended actions, they tend to deviate to near zero in their actual

contribution.

5.2.3 Cheap talk with final commitment

In the Cheap talk with final commitment treatment, subjects start by contributing more

than half of their total points to the public good, but their contributions also decline over

time. In contrast to treatments B and C, contributions in treatment CFC decline in a more

volatile manner.

Next, we examine the behavior pattern in the CFC treatment. Recall that Figure 2

also shows subjects’ last announcements and their actual contribution in this treatment.

In treatment C, subjects’ last intended action is defined unambiguously as their last

announcement in the real-time stage. However, since subjects’ last announcements in

treatment CFC determine their actual contribution, we instead choose their second last

announcements as their last intended actions, and their last announcements as their actual

actions. This is because their second last announcements are the latest announcements

that are irrelevant for actual choices. Moreover, in order to qualify the last revision of

announcement as a deviation from the previous signals, it has to happen at the very end

of the one-minute stage. Therefore we use the following empirical criteria for the latest

announcement that is irrelevant for one’s actual choice: it is the second last announcement

if the last revision of announcement is made within the last 3 seconds of the 60 seconds; it
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is the last announcement otherwise.15

Similar to treatment C, we can see from Figure 2 that subjects tend to deviate downward

at their last revisions of announcements. That is, even when subjects can monitor each

other’s action in a real-time setting, they still deviate to near zero contribution in the very

end of the one-minute stage. We perform a test to see if the differences between the actual

choices and the last announcements are different in C and CFC (difference in difference),

the Mann-Whitney test shows that they are significantly different (p = 0.029, n=11).16

Our results depart from the findings in Deck and Nikiforakis (2012) and Avoyan and

Ramos (2020). In these two studies, real-time monitoring with final commitment helps

achieve efficient coordination in a minimum effort game. However, our game differs from

the minimum effort game in that, in our game, high level contribution is not supported

by Nash equilibrium. Therefore, our results indicate that real-time monitoring with final

commitment is not sufficient to boost contribution in a public goods game.

Result 4. In the Cheap talk with final commitment treatment, contribution is higher but

close to the theoretical prediction. Though subjects start by sending high intended actions, they

deviate to near zero contribution by the end of the minute.

5.2.4 Incremental commitment

In the Incremental commitment treatment, contributions increase and reach a high level

over time. The Nash equilibrium prediction is that contribution level equals to zero. The

ε-equilibrium with standard preference (or weak inequality-aversion) predicts that exactly

one player opts out at t = 0, and the other three players opt out immediately if a second

player opts out. Finally, the ε-equilibrium with strong inequality-aversion predicts that

15This criteria can be best understood by comparing the time distribution of last announcements in

treatment C and CFC (see Figure 6 in Appendix C): While in treatment C the announcements are relative

equally distributed across the 60 seconds, in treatment CFC over half (54.78%) of the last announcements

take place in the last 3 seconds. This indicates that last minute revisions are common practices in treatment

CFC, and can be considered as deviations from one’s previous announcements. Therefore, with the presence

of revisions in the last 3 seconds, we treat the second last announcements as the intended actions, and the

last revision as the actual contribution. For the remaining cases, since last announcements are intact for

more than 3 seconds, we instead consider them as both intended actions and real contributions.
16The average difference between the last announcement and the actual contribution is 9.05 in treatment

C and 7.05 in treatment CFC. Though the differences are significantly different between treatments, neither

the average contribution nor the average last announcements are significantly different between these two

treatments (Mann-Whitney tests, p = 0.273, p = 0.715).
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once one player opts out, the other three players follow immediately. Our results clearly

reject the Nash equilibrium prediction, and support predictions by ε-equilibrium.

To investigate whether our results are consistent with standard preference (weak

inequality-aversion) or preference with strong inequality-aversion, we examine the opting

out time pattern in all groups. Firstly, Figure 3 shows the average opting out time of

the player who opts out the first, the second, the third, and the fourth, respectively. We

can see that, once one of the players opts out, the other three players follow almost

immediately. The average time interval between each two successive quitters are always

within 2 seconds (1.8 seconds between quitters 1 and 2, 0.5 seconds between quitters 2

and 3, and 1.8 seconds between quitters 3 and 4). Over time, the first quitter opts out later

and later, which can be explained by learning from the past outcomes.

Figure 3: Average opting out time of each player. The average opting out time

are calculated at four-player game level.

Next, we examine the proportion of the game results corresponding to three different

theoretical predictions mentioned above. Considering the limitation of subjects’ attention

and reaction time, we say that a subject “opts out at the beginning of the game” if one opts

out in the first second, instead of using the very restrictive theoretical prediction t = 0.

Further, we define an opting out choice as an “immediate reaction” to the previous opting

out choice in the group if the time interval between them is not larger than 2 seconds. 17

17We use two seconds for the reaction interval, because subjects need to first observe another player’s

action and react to it, which presumably takes longer than just opting out in the beginning of the one minute.
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According to these two criteria, we further divide all the games in this treatment into the

following four categories.

i (Nash equilibrium prediction): All subjects in the same group opt out within the first

second.

ii (ε-equilibrium prediction with standard preference or weak inequality-aversion): One subject

opts out within the first second, the second quitter opts out after the first second, and the

time interval between any two successive “opting out” choices of the last three quitters are

no more than 2 seconds.

iii (ε-equilibrium prediction with strong inequality-aversion): All the four subjects opt out

after the first second, and the time interval between any two successive “opting out”

choices are no more than 2 seconds.

iv (others): Cases can not be classified by the other three categories.

Note that the above categories are designed carefully so that they are mutually exclusive.

However, it is worth note that the cases classified as the Nash equilibrium predictions can

always be supported by the ε-equilibrium prediction. Therefore, type ii and iii are the

ones that cannot be supported by Nash equilibrium. We summarize the four categories

of behavior pattern in Table 3. We can see that the ε-equilibrium prediction with strong

inequality-aversion has the strongest prediction power, which accounts for 59.6% of the

total cases. It is followed by ε-equilibrium prediction with standard preference or weak

inequality-aversion, which accounts for 8.8% of total cases. Only 0.8% of total cases are in

line with the Nash equilibrium prediction. Overall, the results indicate that there is strong

inequality aversion among the majority of the players, which causes quick breakdown of

contribution once one player opts out.

Table 3: Categories of behavior pattern in treatment IC

Category Proportion Quitting time Quitting time Contribution

(%) first player other players

i 0.8 0.3 0.9 0.3

ii 8.8 0.6 8.2 2.1

iii 59.6 50.1 50.9 16.9

iv 30.8 16.8 21.9 6.9

Notes: The second column shows the proportion (in percentages) of each category, the third

column shows the average quitting time of the first quitter, the fourth column shows the

average quitting time of the other players, the last column shows the average contribution.
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Finally, recall that the ε-equilibria yields multiple equilibrium predictions (see Section

3.4), one remaining question is which equilibria occur more often than others? Or, in other

words, as long as the other subjects follow the first quitter to opt out within a short time,

for the first quitter it is an equilibrium to quit at any time. Therefore, the first opting out

time is very essential for the overall contribution level. Note that for both equilibrium

predictions with strong inequality aversion or weak inequality aversion, the equilibrium

selection could be approximately identified by the average opting out time of the last three

quitters. Figure 4 shows the cumulative distribution of ε-equilibrium, based on all the

cases classified by category i, ii and iii. We can see that in nearly 50% of the cases the

last three quitters in the group “stay in” until the end of the one minute interval. This

indicates that the most prevalent ε-equilibrium is the one in which players use the near

dominant strategy, that is, they stay in until someone else opts out.

Figure 4: Distribution of ε-equilibria. Behaviors that are consistent with the

ε-equilibria are represented by the average opting out time of the last 3 quitters.

Result 5. In the Incremental commitment treatment, contribution increases over time. In most

cases, once one player opts out, the other three follow quickly. This result is mostly consistent

with theoretical predictions of ε-equilibrium with sufficiently strong inequality-aversion.
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5.3 Learning

According to Figure 1, there seems to be a learning pattern in all the treatments. In order to

check if there is a learning effect, we perform sign-rank test in each treatment, comparing

the contribution levels in the first ten rounds and the last ten rounds. The sign-rank tests

show that, in treatments C, CFC and IC, the contribution levels differ significantly in the

first ten and the last ten rounds. That is, subjects do learn over time in all the treatments

with real-time monitoring. In treatments C and CFC, the mechanism become less effective

over time, whereas in treatment IC, it becomes more effective over time. This indicates

that the effect of the IC mechanism should be expected to be stronger had subjects played

it for more than twenty rounds.

Table 4: Contribution levels in rounds 1-10 vs. rounds 11-20.

Treatments Rounds 1-10 Rounds 11-20 Sign-rank test

B 4.69 1.11 p = 0.109

C 4.84 1.08 p = 0.027

CFC 6.67 3.17 p = 0.043

IC 10.30 14.46 p = 0.027

Result 6. In treatments C, CFC and IC, there is a clear evidence of learning. Over time,

contributions decrease in C and CFC, but increase in IC.

6 Conclusion

In this study, we propose a real-time incremental commitment mechanism to foster

cooperation in public goods games. In order to investigate the essential factors that are

effective in boosting cooperation under the real-time setting, we study this mechanism

together with three others: a cheap talk mechanism, a cheap talk with final commitment

mechanism, and a baseline public goods game. Theoretically, Nash equilibrium gives the

same predictions for all these setups; ε-equilibrium, in contrast, predicts that it is possible

to achieve full cooperation in the incremental commitment setup. Experimentally, we

implement these mechanisms under a random-matching protocol, and find that subjects

converge to high contribution levels in the incremental commitment treatment, but not in

the others. These results are consistent with the ε-equilibrium predictions.
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This study compares a few real-time monitoring mechanisms in public goods game.

When subjects can announce their intended actions freely in a pregrame stage, they tend

to agree on a relatively high level contribution, but then deviate to the Nash prediction

in the game stage. When the last announcements in the pregame stage determine final

decisions in the game stage, subjects still choose to deviate to Nash equilibrium by the

end of the pregame stage, yielding no higher contribution compared to the baseline or the

cheap talk treatments. These results indicate that under real-time monitoring, as long as

subjects can deviate to the Nash equilibrium, they may do so unavoidably. However, in

the incremental commitment treatment, since the contribution levels are irreversible and

are perfectly monitored, it demands a strong commitment, which is both sufficient and

necessary to induce high contribution in the public goods game.

The results of this study can be potentially extended to more mechanism design studies

in behavioral game theory. First, our study suggests that real-time monitoring can be a

reasonable setup for many games, and can be very powerful when it is implemented with

the essential factors. Second, decision-making under continuous time has a huge potential,

both theoretically and empirically.
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Appendices

Appendix A: Proofs

Proof of Proposition 4. Without loss of generality, we rank the players as 1, 2, 3 and 4 by

their opting out strategies (s1 ≤ s2 ≤ s3 ≤ s4), e.g., player 1 is the first player who opts out.

First, consider that only player 4 has not opted out, her optimal strategy in this situation

is to opt out immediately. This is because further increasing her contribution hurts her

payoffs (contributing to public goods yields a return rate of 0.4, and keeping to one’s

private account yields a return rate of 1, and 0.4 < 1). Therefore, the last player who stays

in should stop contributing as soon as possible.

Similarly, when both players 3 and 4 have not opted out yet, each player’s optimal

strategy is also to opt out immediately. This is because, even if the remaining two players

will both keep contributing, the total return rate 0.8 is lower than the private account

return rate 1.

What if only player 1 has opted out? Now the situation is more complicated. Suppose

player 2, 3 and 4 stay in and keep contributing, then the total return rate of the public

goods is 1.2, which is greater than the private account rate 1. One might think that for

player 2, opting out immediately is still a good idea, as for himself, the return rate at

his private account is always higher. However, player 2 should be aware that if he opts

out, the other two players will opt out immediately! Therefore, given that the other two

players’ strategies depend on player 2’s strategy, player 2 should not opt out too early, as

this will lead to the other two players to opt out; player 2 should also not opt out too late,

as otherwise the other two players may opt out before him. Since the other two players

strategies are s3 and s4, with s3 ≤ s4, the best response strategy is s2 = s3 − τ . That is, player

2 should opt out just a little before player 3, such that his opting out will not move ahead

the opting out time of the second last player. However, by the same argument, player 3

and player 4’s best response, given s2, is to opt out at s2 − τ . This suggests that when 3

players are remained in the contributing phase, each player’s optimal strategy is to be the
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first to opt out (but just a little bit before the next player), the only equilibrium is that they

all opt out at t = 0.

Finally, for player 1, his optimal strategy given the remaining three players strategies,

is to also opt out at t = 0.

Proof of Proposition 5. First, we prove that after one player opts out, it is a near dominant

strategy for the other three players to stay unless another player opts out.

For player i with i , 1, suppose that the other two remaining player’s strategy is to

opt out at t ≥ sj and t ≥ sk with sj ≤ sk (or when another player opts out), then player i’s

optimal strategy is to opt out just a little earlier at t = sj − τ , this way, player j will not

opt out earlier than sj , and player i can gain the maximal payoff by leaving a little earlier

than player j. We denote the payoff by opting out at sj − τ as u(sj − τ). Compared to this

maximal payoff, the strategy to leave only when a second player opts out is equivalent to

leaving at sj + τ . Therefore, the payoff difference is presented in the equation below.

max{u(sj − τ)−u(sj + τ)}

= {20sj ∗ 0.4 ∗ 2 + 20(sj − τ) ∗ 0.4− 20(sj − τ)}

− {20sj ∗ 0.4 ∗ 2 + 20(sj + τ) ∗ 0.4− 20(sj + τ)}

= 24τ

The maximal value of the above equation is achieved when sj = sk, as only in this case

player i does not make player j or player k to leave earlier by opting out at sj − τ .

Therefore, if ε ≥ 24τ , then staying in the contributing phase unless a second player

opts out is always in the ε-best response set, no matter when the other players plan to opt

out: such a strategy is a near dominant strategy. Given that the remaining three players

will use such a near dominant strategy after one player opts out, it is an optimal strategy

for the first player to opt out at t = 0, he achieves highest payoff this way. No player wishes

to deviate, this is an ε-equilibrium.

Second, consider the strategy profile s1 = 0 and s2 = s3 = s4 = s̃. For players 2, 3 or 4,

the maximal gain is achieved by deviating to s̃ − τ , as this way she can opt out earlier to

gain a bit more payoff, without making the other players opting out earlier. By deviating

to s̃ − τ , one gains 20τ in her private account, and loses 0.4 ∗ 20τ in her public account:

one has a maximal net gain of 12τ . Therefore, if ε ≥ 12τ , choosing the same s̃ as the other

two players is one of the best strategies. The rest of the proof is the same as the first set

of equilibria. In sum, the strategy profile s1 = 0 and s2 = s3 = s4 = s̃ for o ≤ s̃ < 1is an

ε-equilibrium if ε ≥ 12τ .
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Proof of Proposition 6. First, we prove that it is a near dominant strategy for all the

players to stay unless one player opts out.

For player i, suppose that the other three player’s strategy is to opt out at t ≥ sj , t ≥ sk
and t ≥ sq with sj ≤ sk ≤ sq (or when another player opts out), then player i’s optimal

strategy is to opt out just a little earlier than player j at t = sj − τ . This way, player j will

not opt out earlier than sj , and player i can gain the maximal payoff by leaving a little

earlier than player j. We denote the payoff by opting out at sj − τ as u(sj − τ). Compared to

this maximal payoff, the strategy to leave only when one player opts out is equivalent to

leaving at sj + τ . Therefore, the payoff difference is presented in the equation below.

max{u(sj − τ)−u(sj + τ)}

= {20sj ∗ 0.4 ∗ 2 + 20(sj − τ) ∗ 0.4− 20(sj − τ)}

− {20sj ∗ 0.4 ∗ 2 + 20(sj + τ) ∗ 0.4− 20(sj + τ)− 20
α
3
∗ 1}

= 24τ +
20ατ

3

The maximal value of the above equation is achieved when sj = sk = sq, as only in this

case player i does not make player j or player k to leave earlier by opting out at sj − τ .

Therefore, if ε ≥ 24τ + 20ατ
3 , then staying in the contributing phase unless one player

opts out is always in the ε-best response set, no matter when the other players plan to opt

out. Therefore, such a strategy is a near dominant strategy. When each player uses such a

near dominant strategy, it is an ε-equilibrium.

Second, consider the strategy profile s1 = s2 = s3 = s4 = s̃ with 0 ≤ s̃ < 1. For any player,

the maximal gain is achieved by deviating to s̃ − τ , as this way she can opt out earlier to

gain a bit more payoff, without making the other players opting out earlier. By deviating

to s̃ − τ , one gains 20τ in her private account, and loses 0.4 ∗ 20τ in her public account:

one has a maximal net gain of 12τ . Note that this part is exactly the same as the proof of

Proposition 5, because deviating to opting out earlier only allows the player to earn more

instead of less than others, therefore this deviation does not trigger inequality aversion. In

sum, the strategy profile s1 = s2 = s3 = s4 = s̃ for 0 ≤ s̃ < 1 is an ε-equilibrium if ε ≥ 12τ .

Appendix B: Experimental instructions

In this appendix, we provide the experimental instructions that are translated from the

original Chinese version.
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Instructions (All treatments)

Welcome to this experiment on decision-making. Please read the following instructions

carefully. The experiment will last for about 40 minutes. During the experiment, do not

communicate with other participants in any means. If you have any question at any time,

please raise your hand, and an experimenter will come and assist you privately.

At the beginning of each round, you will be randomly reallocated into a group of four

participants. Each participant seat behind a private computer, and no one can learn the

identity of one another. All decisions are made on the computer screen. It is an anonymous

experiment. Experimenters and other participants cannot link your name to your desk

number, and thus will not know the identity of you or of other participants who made the

specific decisions.

During the experiment, your earnings are denoted in points. You will receive 30 points

at the beginning of the experiment (show-up fee). Your earnings depend on your own

choices and the choices of other participants. At the end of the experiment, your earnings

will be converted to RMB at the rate: 2 points = 1 RMB. After the experiment, your total

earnings will be paid to you in cash privately.

In this experiment, all participants will participate in an allocation game. At the

beginning of the game, each participant is endowed with 20 points. During the game, you

are asked to allocate these points into two accounts: the private account and the public

account. In other words, the sum of the points allocated to the private account and the

public account is 20.

The points you allocate to the private account will be exchanged to your earnings at

the rate of 1:1, and these earnings will be received only by yourself; the points you allocate

to the public account will be exchanged to the public earnings at the rate of 1:1.6, and

these earnings will be equally shared by all the four participants in your group, which

means each point in the public account will yield an earning of 0.4 to all participants in

the group. The total points in the public account equal to the sum of points allocated to

the public account by all participants in your group.

In sum, your earnings can be described by the following equation. Your earnings = the

points in the private account × 1 + the total points in the public account × 0.4.

Part I (Treatment CFC)

In the game, you and your group members will have 1 minute to make your allocation

decision. During this minute, you can send announcements to indicate the amount of
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points you intend to allocate into the public account, you can do so by sending any number

between 0 and 20 (two decimals at most). You can update your intended points to the

public account at any time in this minute, and for as many times as you want. You can

observe all your group members’ latest intended allocations in real-time, and at the same

time, your group members can also observe your latest intended allocations immediately

after your update.

When this one minute ends, your actual allocation to the public account will be

determined by your last intended allocation; meanwhile, your remaining points (20 - the

points allocated to the public account) will be automatically allocated to your private

account. If you do not send any intended allocation during this minute, the computer will

allocate all your 20 points into the private account. At the end of the game, you can see

the total points in the public account and your earnings in the game.

Part I (Treatment IC)

In the game, you and your group members will have 1 minute to make your decision of

allocation. At the beginning of this minute, the points allocated to the public account is

set to be 0 for all the participants in your group. During this minute, as time goes on,

for each participant the points allocated to the public account will increase in constant

pace from 0 to 20, and you can always observe your allocation to the public account in

real-time. You can press the “Stop” button at any time in the minute; once you push the

button, the increasing of allocation to the public account will stop, and your allocation

to the public account will be determined by the time you push the button. Your final

allocation to the public account will equal to the allocation presented when you press the

“Stop” button, and the remaining points (20 - the points allocated to the public account)

will be automatically allocated to your private account.

During this minute, you can observe whether each of your group member has already

pressed the “Stop” button in real-time, and for the ones who already “Stop”, you can also

see each of their allocation to the public account. At the end of the game, you can see the

total points in the public account and your earnings in the game.

Part II (All treatments)

An Example. Suppose that you allocate 12 points to the public account, and the other three

participants in your group allocate 8, 12, and 16 points to the public account, respectively.

Then the points in your private account are 20 - 12 = 8, and the total points in the public

32



account are 12+8+12+16=48. Your Earnings = 8 (points in the private account) x1 + 48

(the total points in the public account) x 0.4 = 27.2(The numbers in the example are

randomly generated by the computer.)

You will play the same game as described above for 20 rounds in total. In every round,

you will be randomly matched with three participants. This means that members in your

group may be different in each round.

In each round, the identity of participants in the group will be represented by A, B, C,

D. For the next round, the identity of each participant will be randomly reallocated again.

In other words, all the participants are anonymous to each other.

At the end of the experiment, 2 out of the 20 rounds will be randomly chosen by the

computer to determine your earnings. Your earnings in this experiment equal the sum of

the points you earn in these two rounds plus the show-up fee (30 points). The points you

earn will be converted to RMB at the rate: 2 points = 1 RMB. Your total earnings (RMB) =

Your total points/2.

Appendix C: Supplemental figures and tables

In this appendix, we provide the supplemental figures that are useful for understanding

the experimental results.

Figure 5: Median (left) and minimum (right) contribution over rounds.
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Figure 6: Time distribution of each player’s last announcement in C and CFC.

34


	Introduction
	Related literature
	Theoretical background
	Baseline
	Cheap talk
	Cheap talk with final commitment
	Incremental commitment
	-equilibrium
	Inequality aversion


	Experimental design and procedures
	Treatment design
	Procedures

	Results
	Treatment differences
	Within treatment analysis
	Baseline
	Cheap talk
	Cheap talk with final commitment
	Incremental commitment

	Learning

	Conclusion

