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Abstract. Newey-West (1987) standard errors are the dominant standard errors used for heteroskedasticity-

and autocorrelation-robust (HAR) inference in time series regression. The Newey-West estimator

uses the Bartlett kernel, which is a q = 1 kernel, meaning that 1 is the largest value of q for which

the quantity, k(q)(0) = limt→0 |t|−q(1 − k(t)), is finite. This raises the apparently uninvestigated

question of whether the Bartlett kernel is optimal among q = 1 kernels. Here, we demonstrate that

there is no optimal q = 1 kernel for HAR testing in the Gaussian location model or for minimizing

the MSE of the spectral estimator. In fact, the space of q = 1 positive semidefinite kernels is not

closed and, moreover, all q = 1 kernels (satisfying mild regularity conditions) can be decomposed

into a weighted sum of q = 1 and q = 2 kernels, which suggests that there is no meaningful no-

tion of “pure” q = 1 kernels. Nevertheless, it is possible to rank any given collection of q = 1

kernels using the functional Iq[k] =
(
k(q)(0)

) 1
q ∫

k2(t)dt, with smaller values corresponding to bet-

ter asymptotic performance. We examine a wide variety of q = 1 estimators, including all those

commonly encountered in the literature and ones newly developed here. None improve upon the

Bartlett kernel.

1. Introduction

In time series regression, when the product of the error term and the regressor is serially correlated

and generalized least squares is not possible, one must use heteroskedasticity and autocorrelation

robust (HAR) standard errors (SEs). In econometrics, the dominant method for computing HAR

SEs entails computing the Newey-West estimator of the Long Run Variance (LRV) matrix (Newey

and West (1987)). The Newey-West estimator uses the Bartlett, or triangle, kernel, which is a

q = 1 kernel, where q is the Parzen characteristic exponent, which is defined as the largest value

of q such that the quantity, k(q)(0) = limt→0 |t|−q(1− k(t)) is finite. It is well known that, for the

problem of spectral estimation, the mean squared error (MSE) of q = 1 kernels is asymptotically

dominated by that of q = 2 kernels, which are approximately quadratic at the origin (Priestley
1
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(1981)). In the HAR testing problem for the Gaussian location model (the model for which the

HAR Edgeworth literature is most developed), a similar asymptotic dominance of q = 2 kernels

has been shown if one focuses on a Type I/Type II error tradeoff (Sun, Phillips, and Jin (2008))

or on a size-power tradeoff (Lazarus, Lewis, and Stock (2017), LLS). However, calculations in

Lazarus, Lewis, Stock, and Watson (2018) suggest that for sample sizes typically used in time

series econometric applications, neither q = 1 nor q = 2 kernels dominate; typically, the size-power

frontiers cross, so that, in some regions, the Bartlett kernel is preferred in finite samples to the

optimal q = 2 kernel (the Quadratic Spectral (QS) kernel). Since even the optimal q = 2 kernel

does not necessarily outperform q = 1 kernels, in particular, the Bartlett kernel, in finite samples,

this raises the question of whether the Bartlett kernel is optimal among q = 1 kernels or, if not,

what q = 1 kernel improves upon it.

It appears that the question of optimality among q = 1 kernels has received little attention, either

in the classical spectral estimation literature or, more recently, in the HAR inference literature.

Other q = 1 kernels, or tests that have q = 1 implied mean kernels (in the sense of LLS), include

the split-sample (or “batch mean”) estimator of the LRV (Ibragimov and Muller (2010)) and the

LRV estimator obtained by projecting the product series ẑt = xtût (xt being the regressors and ût

the regression residual) onto the first m Legendre polynomials.

Classical results in spectral estimation show that the Mean Squared Error (MSE) of a kernel

estimator of the spectral density, evaluated at the optimal rate for the sequence of truncation

parameters, S, is increasing in Iq[k] =
(
k(q)(0)

) 1
q
∫
k2(t)dt, where k is the kernel of interest, k(q) =

limt→0 |t|−q(1−k(t)), and q is the largest value for which k(q)(0) is finite. Lazarus, Lewis, and Stock

show that, in the Gaussian location model, both the size-power and Type I/II error tradeoffs of HAR

tests are increasing in Iq[k] when Keifer-Vogelstein Fixed-b inference is used (where b = T−1S).

Thus, kernels with the same value of q can be ranked, for both estimation and testing, by their

values of Iq[k], with smaller values preferred. Among q = 2 kernels, Iq[k] is minimized by the

so-called Quadratic Spectral (QS) kernel (Epanechnikov 1969). Minimization of Iq[k] over the class

of q = 1 kernels appears to be unaddressed.

Here, we demonstrate that there is no optimal q = 1 kernel in the sense of minimizing Iq[k] =(
k(q)(0)

) 1
q
∫
k2(t)dt. We further show that the set of q = 1 psd kernels is not closed as a subset of

the space of all psd kernels and that, indeed, all q = 1 kernels satisfying mild regularity conditions,
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which include the Bartlett kernel, can be decomposed into a weighted sum of q = 1 and q = 2

kernels, which suggests that there is no meaningful notion of “pure” q = 1 kernels.

We provide a restricted family of q = 1 kernels among which the Bartlett kernel is optimal

and we also show (by analytical calculations) that the Bartlett kernel produces HAR size-power

tradeoffs that dominate selected other q = 1 kernels that do not fit into this class. Finally, we

explore a collection of orthogonal series estimators and compare their performance to both their

corresponding limiting implied mean kernel estimators and the Bartlett kernel. Despite considering

a wide variety of q = 1 estimators, including all those commonly encountered in the econometric

literature, we do not find any that dominate the Bartlett kernel, although a limiting implied mean

kernel estimator based on the Haar system of wavelets is able to achieve parity asymptotically.

These results suggest that the Newey-West estimator may, in fact, achieve a form of optimality

among those using q = 1 kernels.

This research builds on a vast literature on HAR estimation and inference in models with time

series variables. The seminal paper in econometrics is Newey and West (1987), which introduced

the Newey-West LRV estimator in the context of HAR inference. Drawing on classical results in the

literature on spectral density estimation (e.g., Grenander and Rosenblatt (1957), Brillinger (1975),

and Priestley (1981)), Andrews (1991) characterized the optimal rate for the truncation parameter

for minimizing the estimator mean squared error and, along with Newey and West (1994), proposed

feasible LRV estimators to achieve the optimal estimation rate. Early Monte Carlo evidence,

notably Newey and West (1994), showed, however, that LRV estimators with optimal estimation

rates resulted in large size distortions. The asymptotic expansions of Velasco and Robinson (2001)

and Sun, Phillips and Jin (2008) show that the leading higher order terms of the null rejection rate

of the test are a weighted sum of the variance and the bias, not the squared bias, which enters

the MSE. Accordingly, the size distortion can be reduced by using larger truncation parameters

(Kiefer, Vogelsang, and Bunzel (2000)) and by using Kiefer and Vogelsang’s (2005) so-called fixed-

b critical values to account for the increased variability of these estimators. Jansson (2004), Sun,

Phillips and Jin (2008), and Sun (2014) show that using fixed-b critical values provides a higher-

order refinement to the null rejection rate of HAR test statistics in the Gaussian location model.

In general, the fixed-b distributions of HAR test statistics are nonstandard, however, if the LRV

estimator is computed as a projection onto a low-frequency orthogonal series, the HAR t- and

F- statistics have fixed-b t- and F- distributions (Brillinger (1975), Phillips (2005), Mller (2007),
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and Sun (2013)). Muller (2014) and Lazarus, Lewis, Stock, and Watson (2018) provide additional

surveys of this literature.

2. Kernels and Known Results

Kernel functions are widely used for long-run variance estimation in time series applications

since, under certain additional assumptions on the kernel, namely that it is positive semidefinite

(psd) and appropriately normalized, kernel variance estimators are guaranteed to have desirable

properties such as nonnegativity. Letting k be the kernel function, T be the number of time points,

S be a scaling (truncation) parameter, Γ be the autocovariance function, and Ω be the long-run

variance, such estimators take the form

Ω̂ =

T−1∑
i=1−T

k

(
i

S

)
Γ̂(i), where, Γ̂(i) =

1

T

min(T,T+i)∑
t=max(1,i+1)

ẑtẑ
′
t−i. (1)

In variance estimation, kernels are required to be symmetric about 0 and are normalized to have

k(0) = 1. They are typically characterized by their behavior near zero. If a kernel admits a series

expansion of the form k(t) = 1 +
∑∞

i=1 ci|t|i, the order of the kernel corresponds to the index of the

first nonzero coefficient. More generally, a kernel’s order is defined as the largest q for which the

quantity, k(q)(0) = limt→0 |t|−q(1 − k(t)), is finite. Note that, for any psd function, |k(t)| ≤ k(0),

so k(q)(0) ≥ 0.

In addition to being symmetric with k(0) = 1, we will also require that kernels be positive

semidefinite and continuous. The restriction that k be psd means that, for any n ∈ N and any

t ∈ Rn, the matrix K, with entries Kij = k(ti − tj), is also psd. By Bochner’s Theorem, the class

of continuous psd functions with k(0) = 1, is exactly the set of (inverse) Fourier Transforms of

probability measures (we say inverse due to the convention that we use for the Fourier Transform).

This strong result, combined with the properties of the Fourier Transform itself, and the definition

of k(q)(0), tells us that, under some additional regularity conditions, all continuous psd kernels must

have an order, q, that is at most 2.

The assumption that psd kernels have nonnegative Fourier transforms is common in the liter-

ature, with Andrews (2001) requiring this of kernels in his class K2 and Priestly (1981) similarly

assuming that the discrete Fourier Transform of his kernels be nonnegative. Thus, the assumption

of continuity is not burdensome and, indeed, all widely used psd kernels are, in fact, continuous.
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We now define some notation. Integrability will be with respect to Lebesgue measure on R, so

that f is integrable if it is a Lebesgue measurable function and
∫
|f(x)|dx < ∞, with Lp spaces

defined in the standard way, so that f ∈ Lp means that
∫
|f(x)|pdx <∞. F will denote the Fourier

Transform with f̂(ω) = (Ff)(ω) = (2π)−1
∫
e−iωtf(t)dt, so that

(
F−1f̂

)
(t) =

∫
eiωtf̂(ω)dω. Ad-

ditionally, we define the (inverse) Fourier Transform of a measure by
(
F−1µ

)
(t) =

∫
eiωtdµ. Note

that this convention is somewhat unusual, but is standard in the kernel literature because it ensures

that the (inverse) Fourier transformation of a probability measure has k(0) = 1.

3. Non-Existence of an Optimal q = 1 kernel

For q = 1, Iq[k] = k(1)(0)
∫
k2(t)dt. Let k1(t) = (1 − |t|)I[−1,1](t), the Bartlett kernel, which

is used by the Newey-West variance estimator, and let k2(t) be any fixed q = 2, continuous psd

kernel with
∫
k2(t)

2dt = M < ∞ (and k2(0) = 1). Then k
(1)
1 (0) = limt→0

1−(1−|t|)
|t| = 1, k

(1)
2 (0) =

limt→0
1−k2(t)
|t| = 0. Now, let kε = εk1 + (1− ε)k2, ε ∈ (0, 1]. Then,

k(q)ε (0) = lim
t→0

1− kε(t)
|t|q

= lim
t→0

1− (εk1(t) + (1− ε)k2(t))
|t|q

= ε lim
t→0

1− k1(t)
|t|q

+ (1− ε) lim
t→0

1− k2(t)
|t|q

= εk
(q)
1 (0) + (1− ε)k(q)2 (0)

(2)

Thus, k
(1)
ε (0) = εk

(1)
1 (0) + (1 − ε)k(1)2 (0) = ε · 1 + (1 − ε) · 0 = ε. Since k

(q)
1 (0) = ∞ for q > 1

and 0 ≤ k
(q)
2 (0), k

(q)
ε (0) = εk

(q)
1 (0) + (1 − ε)k(q)2 (0) = ∞ for q > 1 as well, so kε is a q = 1 kernel.

By Bochner’s Theorem, the class of continuous positive semidefinite functions with k(0) = 1,

is composed of exactly those functions that are the (inverse) Fourier transform of a probability

measure. Letting ki = F−1(µi), where µi is a probability measure, and using the linearity of the

Fourier Transform, we have, kε = εk1+(1−ε)k2 = εF−1(µ1)+(1−ε)F−1(µ2) = F−1(εµ1+(1−ε)µ2).

So, since the weighted average of two probability measures is again a probability measure, kε is also

the (inverse) Fourier Transform of a probability measure, and, thus, a valid continuous psd kernel.

Therefore, we can produce valid q = 1, continuous positive semidefinite kernels with arbitrarily

small values of k
(1)
1 (0). Then,
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Iq[kε] =
(
k(q)ε (0)

) 1
q

∫
k2ε (t)dt = ε ·

∫
ε2k1(t)

2 + 2ε(1− ε)k1(t)k2(t) + (1− ε)2k2(t)2dt (3)

So, for small values of ε, Iq[kε] ≈ ε
∫
k2(t)

2dt or, more formally, using Holder’s Inequality and

that 0 < ε ≤ 1, ε(1− ε) ≤ 1
4 ,
∫
k2(t)

2dt = M <∞, and
∫ 1
−1 (1− |t|)2 dt = 2

3 ,

Iq[kε] ≤ ε ·

(
2

3
+

1

2

(
2M

3

) 1
2

+M

)
(4)

Therefore, we can make Iq[k] arbitrarily small by mixing sufficiently small amounts of the Bartlett

kernel with any q = 2, square integrable, continuous psd kernel. Specifically, since Iq[k1] = 2
3 and

Iq[kε] is continuous in ε, we can choose ε so that Iq[kε] takes any value in (0, 23 ]. Therefore, there

can be no optimal q = 1 kernel using the same optimality criterion used for q = 2 kernels (ensuring

that it provides the optimal asymptotic size-power tradeoff). The reason that this argument does

not apply to q = 2, continuous psd kernels is because, as discussed above, any continuous psd kernel

must have q ≤ 2. Thus, there are no continuous psd kernels with q > 2 with which to mix.

This also gives us a topological interpretation of why there can be no optimal q = 1 ker-

nel: the set of q = 1 psd kernels is not a closed subset of the set of all psd kernels, so se-

quences of q = 1 kernels may have limits that are instead q = 2 (consider kε as ε goes to 0).

It is also true that there exist sequences of q = 2 kernels which have q = 1 kernels as their

limits. A simple example is the family of kernels kb = F−1
(
cbω
−2(1− cos(ω))I[−b,b](ω)

)
with

cb =
(∫ b
−b ω

−2(1− cos(ω))dω
)−1

. For any finite b > 0, this yields a q = 2 kernel. However, since

F
(
(1− |t|) I[−1,1](t)

)
(ω) = π−1ω−2 (1− cos(ω)), as b goes to infinity, the limiting kernel is the

Bartlett kernel, which is q = 1. Taken together, these results tell us that neither the set of q = 1,

nor the set of q = 2, psd kernels are closed subsets of the set of all psd kernels. This has another

interesting implication: since the linear subspaces of a Banach space are closed, there do not exist

(Banach) bases for the set of all scalar multiples of the q = 1 psd kernels or the set of all scalar

multiples of the q = 2 psd kernels (even if we restrict to only the continuous psd kernels). This

makes it more difficult to study their structures separately.

We summarize the above results in the following Theorem.
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Theorem 1. For any I ∈ (0, 23 ] there exists a q = 1 psd kernel, k, with Iq[k] = k(1)(0)
∫
k2(t)dt = I.

Neither the set of q = 1, nor the set of q = 2, psd kernels, is a closed subset of the space of all

psd kernels. Thus, neither the set of all scalar multiples of the q = 1 psd kernels, nor the set of all

scalar multiples of the q = 2 psd kernels, possess (Banach) bases.

Proof. As above. �

4. Structure of q = 1 PSD Functions

4.1. General Decomposition of q = 1 Kernels.

We now use Fourier Analysis in order to more fully characterize the structure of q = 1 psd

kernels. We begin with several simple lemmas. Recall that F denotes the Fourier Transform with

f̂(ω) = (Ff)(ω) = (2π)−1
∫
e−iωtf(t)dt, so that

(
F−1f̂

)
(t) =

∫
eiωtf̂(ω)dω. Several basic results

from Fourier analysis are widely used in the classical spectral estimation literature (e.g. Priestley,

1981), including the fact that, if f, f ′ ∈ L1, then F (f ′) (ω) = iωf̂(ω), which can be easily shown

using integration by parts and can be iterated to give F
(
f (n)

)
(ω) = (iω)nf̂(ω). We will make use

of a similar result.

Lemma 2. Let K(ω) and ωK(ω) be integrable functions, then, if k = F−1K, k is continuously

differentiable and k′ = iF−1 (ωK(ω))

Proof.

k(t+ h)− k(t)

h
=

(
F−1K

)
(t+ h)−

(
F−1K

)
(t)

h

= h−1
[∫

eiω(t+h)K(ω)dω −
∫
eiωtK(ω)dω

]
= h−1

∫
eiωt

(
eiωh − 1

)
K(ω)dω
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∣∣∣h−1eiωt (eiωh − 1
)∣∣∣ = |h|−1

∣∣eiωt∣∣ ∣∣∣eiωh − 1
∣∣∣

= |h|−1 · 1 ·
(

1− eiωh − e−iωh + 1
) 1

2

= |h|−1 (2− 2 cos(ωh))
1
2

= |h|−1
(

2− 2

(
1 + 0− 1

2
cos(ωh∗)(ωh)2

)) 1
2

≤ |h|−1
(
1 · (ωh)2

) 1
2 = |h|−1|ωh|

= |ω|

where the fourth equality is due to Taylor’s Theorem, with h∗ ∈ [0, h], and the inequality is

due to the fact that | cos(x)| ≤ 1. Thus, |h−1eiωt
(
eiωh − 1

)
K(ω)| ≤ |ωK(ω)|. Since k′(t) =

limh→0 h
−1 (k(t+ h)− k(t)), limh→0 h

−1eiωt
(
eiωh − 1

)
= d

dhe
iω(t+h)|h=0 = iωeiωt, and, by assump-

tion, ωK(ω) is integrable, we can apply the Dominated Convergence Theorem to get

k′(t) = (2π)−1
∫
iωeiωtK(ω)dω = iF−1 (ωK(ω)) (t)

Since ωK(ω) is integrable, F−1(ωK(ω)) is uniformly continuous, so k is continuously differen-

tiable.

�

Corollary 3. Let K(ω) and ω2K(ω) be integrable functions, K ≥ 0, and
∫
K(ω)dω = 1. Then

k = F−1K is a q = 2, continuous psd kernel.

Proof. Since |ωK(ω)| ≤ |K(ω)| for |ω| ≤ 1, |ωK(ω)| ≤ |ω2K(ω)| for |ω| ≥ 1, and K(ω), ω2K(ω) ∈

L1, ωK(ω) ∈ L1 as well. Then, by applying the lemma twice, we get k = F−1K ∈ C2 and

k′′(t) = −F−1
(
ω2K(ω)

)
. Since K is a probability distribution, by Bochner’s Theorem, k is a

continuous psd kernel. Also, note that, since
∫
K(ω)dω = 1, K is positive on a set of positive

measure and k(0) = 1. Since, k ∈ C2, by Taylor’s Theorem, k(t) = k(0) + k′(0)t + 2−1k′′(t∗)t2 for

some t∗ ∈ [0, t]. Since k′ ∈ C1 and k is symmetric, then k′(0) = 0. Thus, k(t) = 1 + 2−1k′′(t∗)t2

so k(2)(0) = limt→0 t
−2(1 − k(t)) = −2−1 limt∗→0 f

′′ (t∗) = −2−1k′′(0) = −2−1 · −
∫
ω2K(ω)dω =

2−1
∫
ω2K(ω)dω. Since 0 < 2−1

∫
ω2K(ω)dω <∞, k is a q = 2, continuous psd kernel. �
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Corollary 4. Let K ≥ 0,
∫
K(ω)dω = 1, and K have compact support, then k = F−1K is a q = 2,

continuous psd kernel.

Proof. Let M = supω over the support of K. Then,
∫
ωnK(ω)dω ≤Mn

∫
K(ω)dω = Mn <∞, so

the conditions of the above lemma are satisfied and k is a q = 2, continuous psd kernel. �

We can now prove the following, somewhat surprising, result.

Theorem 5. If k is a q = 1, continuous psd kernel with k(1)(0) > 0, such that there exists an

integrable function K such that k = F−1K, then k can be decomposed as the (nontrivial) weighted

sum of q = 1 and q = 2, uniformly continuous psd kernels. Further, there are infinitely many such

decompositions.

Proof. If such a K exists, then, since it is integrable and 1 = k(0) =
∫
K(ω)dω, it is a proba-

bility distribution (as we would expect from Bochner’s Theorem, the subtlety is that Bochner’s

theorem only guarantees the existence of a probability measure, not a density, so the existence

assumption is not vacuous). Let b be sufficiently large that
∫ b
−bK(ω)dω > 0 and define K1,b(ω) =(

2
∫∞
b K(ω)dω

)−1
K(ω)I[|x| > b], K2,b(ω) =

(∫ b
−bK(ω)dω

)−1
K(ω)I[|ω| ≤ b]. Then Ki,b ≥ 0 and∫

Ki,b(ω)dω = 1, so, by Bochner’s Theorem, ki,b = F−1Ki,b are continuous psd kernels (in fact, they

are uniformly continuous since Ki,b ∈ L1, since K ∈ L1, by assumption). Further, by Corollary

4, k2,b is q = 2. Since 1 =
∫
K(ω)dω, K(ω) =

(
2
∫∞
b K(ω)dω

)
K1,b(ω)+

(∫ b
−bK(ω)dω

)
K2,b(ω), and

k(t) =
(
2
∫∞
b K(ω)dω

)
k1,b(t)+

(∫ b
−bK(ω)dω

)
k2,b(t), we have, k

(1)
1,b (0) =

(
2
∫∞
b K(ω)dω

)−1
k(1)(0) >

0, so k1,b is q = 1. Thus, as claimed, k can be decomposed into the (nontrivial) sum of q = 1 and

q = 2, uniformly continuous psd kernels. Since b is arbitrary, there are infinitely many such decom-

positions. �

We can now prove a useful corollary which follows from a form of the Fourier Inversion Theorem

typically encountered in abstract harmonic analysis. Specialized to our setting, it says that, if k

is continuous, positive semidefinite, and normalized so that k(0) = 1, and k ∈ L1, then, k̂ ∈ L1

as well, and the probability measure µk, of which k is the inverse Fourier Transform, has density

K = k̂, so that, µk(ω) = k̂(ω)dω. Thus, we can use the Fourier Transform to recover K = k̂, which

will be nonnegative and integrate to 1.
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Corollary 6. If k is a q = 1, continuous psd kernel with k(1)(0) > 0, and k ∈ L1, then it can be

decomposed as the (nontrivial) weighted sum of q = 1 and q = 2, continuous psd kernels. Further,

there are infinitely many such decompositions.

Proof. If k ∈ L1, then, using the version of the Fourier Inversion Theorem quoted above, K = k̂ is

a probability density and is, thus, integrable. The result then follows directly from the theorem.

Since any k with compact support is integrable, the result holds in that important special case. �

The above Theorem tells us that any q = 1 psd kernel that satisfies very mild regularity condi-

tions, can be (nontrivially) decomposed into another q = 1 psd kernel and a q = 2 psd kernel, so

there is no natural notion of a minimal or irreducible q = 1 kernel. This means that apparently

artificial kernels, such as the one we exhibited to show that no optimal q = 1 kernel exists, are,

in some sense, no more unnatural than the Bartlett kernel, which appears at first glance to be a

“pure” q = 1 kernel in a way that such a composite kernel does not. Also of note is the fact that

it is the tails of K = k̂ that determine the order of the kernel. The central portion has no effect.

4.2. Kernel Decompositions.

As a demonstration of this decomposition, we will separate the Bartlett kernel into a q = 1 piece,

which comes from the tails of K = k̂, and a q = 2 piece, which is derived from the center of K. We

begin by computing the Fourier transform of k(t) = (1−|t|)I[−1,1](t), K(ω) = 1−cos(ω)
πω2 . We then split

K at some b ≥ 0 into two functions K1,b(ω) = 1−cos(ω)
πω2 I[|ω| > b] and K2,b(ω) = 1−cos(ω)

πω2 I[|ω| ≤ b]

and apply the inverse Fourier Transform to obtain k1,b, k2,b. Note that these kernels are not properly

normalized, so ki(0) 6= 1, but they instead satisfy k = k1,b + k2,b, which makes it easier to see how

each kernel contributes to the whole. As seen in Figure 1, the Tail Kernel, k1,b, is a scaled q = 1

kernel and contributes the sharp point at 0, while the Central Kernel, k2,b, is a smooth, scaled

q = 2 kernel. Also of note, as b increases, the relative contribution of k1,b decreases; additionally,

k2,b becomes narrower and more pointed at its central peak, although, even for arbitrarily large b,

k2,b will still remain q = 2 with a rounded, rather than sharp, peak.

5. Other q = 1 Kernels

A natural starting point for further exploration of q = 1 kernels is other Bartlett-like kernels. Two

straightforward generalizations of the Bartlett kernel are the families kp(t) =
(
1−

∣∣ t
b

∣∣)p I[−1,1]
(
t
b

)
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Figure 1. Decompostion of the Bartlett Kernel into (nonunique) q = 1 and q = 2
components. A. b = 1. B. b = π.

and kr(t) =
(
1−

∣∣ t
b

∣∣r) I[−1,1]
(
t
b

)
. It is somewhat surprising that the first choice gives positive-

definite kernels for p ≥ 1, but that the second class does not. However, it is easy to see why

kp(x) gives a psd kernel, at least for integer values of p, since it is simply the pth power of the

Bartlett kernel so, using the fact that the Fourier Transform turns multiplication into convolution,

k̂p = F (kp1) = k̂∗p1 ≥ 0, since k̂1 ≥ 0, where k̂∗p1 is the pth convolutional power of k̂1. For kp,

we compute k
(1)
p (0) = limt→0

1−(1−| tb |)
p

|t| = limt→0
p| tb |
|t| = p

b ,
∫
kp(t)

2dt =
∫ b
−b
(
1−

∣∣ t
b

∣∣)2p dt = 2b
2p+1 ,

so Iq[k] = p
b ·

2b
2p+1 = 2p

2p+1 ≥
2
3 . Therefore, within this family, the Bartlett kernel offers the best

performance.

It is also interesting to consider what happens in the limit as b → ∞ if p also scales with b.

Let p = cb, then kp(b)(t) =
(
1−

∣∣ t
b

∣∣)cb I(|t| ≤ b) and limb→∞ kp(b)(t) = e−c|t|, which has the Fourier

Transform c
c2+ω2 ≥ 0. This gives another natural q = 1 psd kernel, which seems to be used very

uncommonly. Perhaps this is because k(1)(0) = c and
∫
k(t)2dt = c−1 so Iq[k] = c · c−1 = 1 > 2p

2p+1

for any finite value of p ≥ 1.

However, it is surprisingly difficult to construct families of q = 1 psd functions. An alternative

approach has been to instead consider orthogonal series estimators, which we discuss next.

6. Orthogonal Series Estimators

6.1. Basic Principles.

Weighted Orthogonal Series (WOS) estimators take a different approach to estimating the long

run variance from traditional kernel estimators. Starting with some orthonormal basis for L2[0, 1],

{φi}∞i=0 such estimators first project the sequence {ẑt}Tt=1 onto one of the basis functions (excepting

φ0 = 1) and then compute an empirical variance Ω̂i from the projection. These estimates are then

combined via a weighted sum to give the final estimate, Ω̂.
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Ω̂ =
B∑
i=1

wiΩ̂i,
B∑
i=1

wi = 1, wi ≥ 0 Ω̂i = Λ̂iΛ̂
′
i, Λ̂ = T−

1
2

T∑
t=1

φi

(
t

T

)
ẑt (5)

By construction, each Ω̂i, and, thus, Ω̂, are psd w.p. 1.

Associated with each orthogonal series estimator, and sequence of weights {wi}Bi=1, is a limiting

implied mean kernel,

kw(t) =

B∑
i=1

wik̃i(B
−1t), k̃i(t) =

∫ min(1,1+t)

max(0,t)
φi(u)φi(u− t)du (6)

(The nonlimiting implied mean kernel is a sum over discrete time points; see Lazarus, Lewis, and

Stock (2017) for more details.)

For finite T , this provides a connection between orthogonal series estimators and kernel estima-

tors. Specifically, Lazarus, Lewis, and Stock show that, similarly to the case for kernel estimators,

for both estimation and testing, the performance of Weighted Orthogonal Series estimators is char-

acterized by the quantity Iq[k] = (k(q)(0))
1
q
∑

iw
2
i , where the wis are the weights. Note that,

compared to the case of kernel estimators,
∑

iw
2
i has replaced

∫
k2(x)dx. This results in important

differences in performance between the two classes of estimators. For any sequence k
(q)
i (0), we can

minimize this expression subject to the constraint
∑

iwi = 1, in order to determine the optimal

weights. For q = 1, we obtain a relatively simple closed form expression:

wi = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A
(
k(1)(0)

)
(7)

where b0 is the index of the first term used (typically 1) and A is a known function of the k
(1)
i (0)s,

which shows that the weights decrease linearly with increasing i. The derivation is presented in

detail in the appendix.

6.2. Legendre Polynomials.

We begin by considering the well known Legendre Polynomials, which form an orthogonal

series on [−1, 1]. After remapping their domains to [0, 1] and normalizing by multiplying by
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(2i + 1)
1
2 so that

∫ 1
0 φi(x)φj(x)dx = δij , we can compute the limiting implied mean kernels

ki(t) =
∫ min(1,1+t)
max(0,t) φi(u)φi(u− t)du and k(1)(0). Based on an asymptotic expansion, Lazarus, Lewis,

and Stock compute the limiting value of a normalized version of k(1)(0) for the Weighted Orthog-

onal Series estimator. However, we need to compute k(1)(0), for a single limiting implied mean

kernel, which we do directly from the definition. We show the following,

Proposition 7. If k(t) =
∫ min(1,1+t)
max(0,t) φ(u)φ(u− t)du, k(0) = 1, and φ ∈ C1[0, 1] then, k(1)(0) =

1
2

(
φ(0)2 + φ(1)2

)
. Further, if φ ∈ Cn[0, 1], then, if n is odd, limt→0+

dnk
dtn (t)

= 1
2

∑n
i=1(−1)i

[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]
= − limt→0+

dnk
dtn (t), while, if n is even,

limt→0+
dnk
dtn (t) = limt→0−

dnk
dtn (t) =

∫ 1
0 φ(u)φ(n)(u)du. Additionally, if k ∈ Cn−1[−1, 1], these equal-

ities hold with the one-sided derivatives at 0, dnk
dtn± (0) in place of the limits limt→0±

dnk
dtn (t), so

dnk
dtn± (0) = limt→0±

dnk
dtn (t) and k ∈ Cn[−1, 1] if the limits are equal. Finally, if φ generates a q = 2

kernel, then, k ∈ C2[−1, 1] and k(2)(0) = −1
2
d2k
dt2

(0) = −1
2

∫ 1
0 φ(u)φ(2)(u)du.

Proof. See appendix. �

Note that this agrees with the expression given for the limiting implied mean kernel derived by

LLS. Then, for the orthonormal series on [0, 1] generated by the Legendre Polynomials, k
(1)
i (0) =

2i+ 1. Using the optimal weights, as given in Equation 7, gives limB→∞B
−1k(1)(0)

= limB→∞B
−1∑

iwik
(1)
i (0) = 2

3 and limB→∞B
∑

iw
2
i = 4

3 , so Iq[k] = (k(q)(0))
1
q
∑

iw
2
i = 8

9

as B → ∞ (see appendix for details). If we had, instead, used equal weights, we would get

limB→∞B
−1k(1)(0) = B−2

∑
i 2i+ 1 = limB→∞B

−2 ((B + 1)2 − b2
)

= 1 andB
∑

iw
2
i = B

∑
iB
−2 =

1 so Iq[k] = 1 as B → ∞. Interestingly, the equal-weighted orthogonal series estimator is asymp-

totically equivalent to (i.e. has the same Iq[k] as) the exponential kernel, k(t) = e−c|t|, in terms of

performance for estimation and testing. Also, the optimal WOS Legendre polynomial series esti-

mator is asymptotically equivalent to the kp kernel with p = 4, that is k4(t) =
(
1−

∣∣ t
b

∣∣)4 I[−1,1]
(
t
b

)
.

Figure 2 shows the limiting implied mean kernels associated with the first few Legendre polynomials

as well as their Fourier Transforms and optimally weighted sums.

As we mentioned previously, due to the fact that Iq[k] = (k(q)(0))
1
q
∑

iw
2
i for Weighted Orthogo-

nal Series, but Iq[k] =
(
k(q)(0)

) 1
2
∫
k2(t)dt for psd kernels, using an WOS estimator will result in a

different size-power tradeoff than using the limiting implied mean kernel associated with the WOS.

Table 2 shows numerically computed values of Iq[k] using the limiting implied mean kernel for the

first B Legendre polynomials (excepting φ0 = 1) for both equal and numerically estimated optimal



14 THOMAS KOLOKOTRONES AND JAMES STOCK

A.

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

First 6 Implied Kernels for Legendre Polynomials

0

1

2

3

4

5

B. -20 -10 10 20

0.1

0.2

0.3

0.4

Fourier Transform of Implied Kernels of Legendre Polynomials

0

1

2

3

4

5

C.

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Implied (Summed) Kernels for Legendre Polynomials

1

2

3

4

5

D.

-1.0 -0.5 0.5 1.0

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

Implied (Summed) Kernels for Legendre Polynomials

1

5

10

15

20

Figure 2. A. Limiting implied mean kernels for each of the first 6 Legendre
polynomials (including φ0 = 1). B. Fourier Transforms of each of the first 6 Legendre
polynomials (including φ0 = 1). C. Optimally weighted sums using the first (1, 2,
3, 4, 5) Legendre polynomials. D. Optimally weighted sums using the first (1, 5,
10, 15, 20) Legendre polynomials.

weights.

It is somewhat surprising that, when using the limiting implied mean kernel, we require only

the first three Legendre Polynomials (LPs) with optimal weights, and the first two LPs, with

equal weights, to achieve values of Iq[k] that are lower than the asymptotic limiting values of the

corresponding WOS estimators. At least in this case, using the limiting implied mean kernels,

instead of using the orthogonal series directly, leads to a superior asymptotic bias-variance or

size-power tradeoff. This result is similar to a classical result of Grenander and Rosenblatt from

1957.

6.3. Haar Induced Kernels.

Expanding on the idea of using an orthonormal series for variance estimation, we now con-

sider the so-called Haar system (of wavelets). Recall that the Haar wavelets are defined by the

wavelet function ψ(x) = I[0, 1
2
)(x) − I[ 1

2
,1)(x), so that the Haar basis functions are given by 1 and
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Iq[k]
B Equal Optimal
1 1.02857 1.02857
2 0.98355 0.974026
3 0.928701 0.876429
4 0.891171 0.855479
5 0.86494 0.825379
6 0.845773 0.814168
7 0.831214 0.799687
8 0.8198 0.792678
9 0.810619 0.784183
10 0.80308 0.779378
15 0.779385 0.76074
20 0.766907 0.751449
25 0.759211 0.745529
30 0.753991 0.741595
40 0.747362 0.736528
50 0.743329 0.733434

Table 1. Values of Iq[k] using the limiting mean kernel implied by the first B
Legendre Polynomials (except φ0 = 1) using either equal or (numerically estimated)
optimal weights.

ψn,`(x) = 2
n
2 ψ(2nx− `) with n, ` ∈ Z+, 0 ≤ ` < 2n. This collection forms a complete orthonormal

basis for L2[0, 1]. Their induced kernels are given by kn(t) = (1 − 3 · 2n|t|)I[0,2−(n+1))(|t|) − (1 −

2n|t|)I[2−(n+1),2−n)(|t|) (Figure 3). Note that kn(t) is independent of `, since, within each level of

the hierarchy, the basis functions are simply translations of each other. Thus, it is clear that kn is

a q = 1 kernel with k
(1)
n (0) = limt→0 |t|−1(1− (1− 3 · 2n|t|)) = 3 · 2n. Let n′ > n, then we also have,∫

k2n(t)dt = 1
32−n,

∫
kn′(t)kn(t)dx = 2n−2n

′−1 (see appendix for derivations).

Using these expressions, for any sequence of weights {wi}Ni=1, we can construct the limiting

implied mean kernel kw(t) =
∑N

i=1wiki(t), which will also be a q = 1 kernel, since it is the sum of

a finite number of q = 1 kernels. We can use kw(t) to construct a kernel estimator, which we can

then optimize with respect to the weights. Somewhat surprisingly, weighting each basis function

equally, so that wn = 2n

2N+1−1 , where N is the highest level of the Haar system used, (since there

are 2n basis functions at each level of the hierarchy), performs almost as well as using optimal

weights (Table 2). Denoting the equal weighted limiting implied mean kernel by ke(t), we find that

k
(1)
e (0) = 2N+1 + 1,

∫
k2e(t)dt = 2

3 · 2
−(N+1), and, thus, Iq[ke] = 2

3

(
1 + 2−(N+1)

)
(see appendix).

Therefore, the kernel estimator constructed using the equal-weighted limiting implied mean kernel

for the Haar system asymptotically achieves the same size-power tradeoff as the Bartlett kernel.
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However, using equal weights for an Orthogonal Series estimator gives
∑

iw
2
i =

∑
i

(
2N+1 − 1

)−2
=(

2N+1 − 1
)−1

, where the weights here are for each individual basis function ψn,` and not for the

limiting implied mean kernels kn, as in the previous expression. This gives Iq[k] = k(1)(0)
∑

iw
2
i =

2N+1+1
2N+1−1 , which goes to 1 asymptotically. This finding agrees with the fact that Iq[k] = 1 asymptot-

ically for Ibragimov and Muller’s Split Sample estimator, which has been shown to be equivalent

to an orthogonal series estimator using the Haar system as the basis functions when B = 2n − 1

for some n ∈ N . If we instead use optimal weights for the Haar orthogonal series estimator, we

obtain a somewhat lower limiting value of Iq[k] ≈ .91, which is a modest improvement vs. the equal

weighted case, but is still far from the limiting value of Iq[k] = 2
3 attained by the Haar limiting

implied mean kernel or Bartlett kernel.
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Figure 3. A. Limiting implied mean kernels for each of the first 6 levels of
the Haar system. B. Fourier Transforms of each of the first 6 levels of the Haar
system. C. Optimally weighted sums using the first 6 levels of the Haar system. D.
Optimally weighted sums using the first 6 levels of the Haar system, normalized to
allow for comparison of shape.

We see that the kernel estimator that uses the equal-weighted limiting implied mean kernel based

on the Haar system approaches the performance of the Bartlett kernel used in Newey-West after

only a few steps of the hierarchy. It is noteworthy, however, that, even for very large B, the Iq[k]
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Iq[k]
B Equal Optimal
0 1 1
1 0.833333 0.831539
2 0.75 0.742463
3 0.708333 0.703763
4 0.6875 0.684976
5 0.677083 0.675771

Table 2. Values of Iq[k] based on the number of levels of the Haar hierarchy used
(B). Note that Iq[k] is bounded below by 2

3 .

of the limiting implied Haar mean kernel never drops below 2
3 , the value of Iq[k] for the Bartlett

kernel.

7. Summary and Conclusion

We summarize the values of Iq[k] for the estimators discussed above in Table 3.

A curious feature of Table 3 is that there are multiple, seemingly very different, estimators that

are asymptotically equivalent in the sense that Iq[k] = 1: the exponential kernel, equal-weighted

projection onto Legendre polynomials, and the split-sample (batch mean) estimator (which is the

equal-weighted Haar orthogonal series estimator when the number of basis functions in the split-

sample estimator, B = 2n − 1 for some n ∈ N). We do not have an interpretation for this

coincidence.

In this work, we have explored the optimality of q = 1 positive semidefinite kernels in depth. We

have shown that, in fact, there is no optimal q = 1 psd kernel, in the sense that it minimizes Iq[k],

the quantity that Lazarus, Lewis, and Stock have shown determines the asymptotic size-power

tradeoff for kernel and Weighted Orthogonal Series estimators. Indeed, we can produce q = 1 psd

kernels with arbitrarily small values of Iq[k] by mixing small amounts of the Bartlett kernel, which is

used in the Newey-West estimator, with large amounts of any q = 2, square integrable, continuous

psd kernel of choice. Further, we have shown that neither the set of q = 1, nor the set of q = 2,

kernels are closed as subsets of the space of all psd kernels. Thus, sequences of q = 1 kernels may

have a limiting q = 2 kernel and vice-versa. Next, we demonstrated that, under mild regularity
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q = 1 Kernels

Kernel/Series Iq[k]

Newey-West (Bartlett) 2
3

Bartlett-Like Kernels

(1− |x|)p I[−1,1](x) 2p
2p+1

e−c|x| 1

Legendre Polynomials

Optimal Limiting Implied Mean Kernel < .734 (at B = 50)
(Numerical)

Optimal Weighted Series 8
9

Equal Weighted Series 1

Haar Wavelets

Limiting Implied Mean Kernel 2
3

(Optimal/Equal Basis Weights)

Optimal Weighted Series ≈ .91

Equal Weighted Series 1

Split-Sample Step Function 1
(Ibragimov and Muller)

Table 3. Summary of values of Iq[k] for the q = 1 psd kernel and Weighted Or-
thogonal Series estimators discussed in this paper.

conditions, there is no class of “pure” or irreducible q = 1 psd kernels, in the sense that they

cannot be expressed as nontrivial mixtures of a q = 1 kernel and a kernel of higher order. Indeed,

we showed that there are infinitely many such decompositions. These families of decompositions

demonstrate that it is the tails of a kernel’s Fourier Transform that control the order of the kernel

and that, in particular, the tails of q = 1 kernels must not fall off too fast.

Given these impossibility results, we then explored a variety of families of q = 1 estimators. In

every case, we found that the Bartlett kernel possessed a value of Iq[k] (23) that is at least as low as
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that of any family we considered. Notably, limiting implied mean kernel estimators based on the

Haar system were able to achieve this value of Iq[k] asymptotically. This appears to be because

the forms of the limiting implied mean kernels go to the Bartlett kernel asymptotically.

In light of these findings, the next steps appear to be the derivation of higher order Edgeworth

expansions for q = 1 estimators and careful numerical study of the performance of various q = 1

estimators in finite sample settings. This includes such “artificial” estimators as the mixtures of the

Bartlett kernel with q = 2 psd kernels that we used to show the nonexistence of an optimal q = 1

psd kernel. Even though we have shown that every q = 1 psd kernel that satisfies mild regularity

conditions can be represented as an infinite family of nontrivial mixtures of q = 1 and q = 2 kernels,

one might expect, based on higher order Edgeworth expansions, that artificial mixtures containing

large amounts of q = 2 kernels with the Bartlett kernel will behave differently from the Bartlett

kernel itself. Despite the apparent lack of “pure” q = 1 kernels, perhaps differences in higher order

terms may yield additional insights into how q = 1 kernels differ. In any case, given the surprisingly

good performance of q = 1, positive semidefinite kernel estimators in finite samples, particularly

Newey-West, it seems that further exploration of their finite sample behavior is in order.
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8. Appendix

8.1. Proof of Proposition 7.

If k(t) =
∫ min(1,1+t)
max(0,t) φ(u)φ(u− t)du, k(0) = 1, and φ ∈ C1[0, 1] then, k(1)(0) = 1

2

(
φ(0)2 + φ(1)2

)
.

Further, if φ ∈ Cn[0, 1], then, if n is odd, limt→0+
dnk
dtn (t)

= 1
2

∑n
i=1(−1)i

[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]
= − limt→0+

dnk
dtn (t), while, if n is even,

limt→0+
dnk
dtn (t) = limt→0−

dnk
dtn (t) =

∫ 1
0 φ(u)φ(n)(u)du. Additionally, if k ∈ Cn−1[−1, 1], these equal-

ities hold with the one-sided derivatives at 0, dnk
dtn± (0) in place of the limits limt→0±

dnk
dtn (t), so

dnk
dtn± (0) = limt→0±

dnk
dtn (t) and k ∈ Cn[−1, 1] if the limits are equal. Finally, if φ generates a q = 2

kernel, then, k ∈ C2[−1, 1] and k(2)(0) = −1
2
d2k
dt2

(0) = −1
2

∫ 1
0 φ(u)φ(2)(u)du.

Proof. Let d
dt± denote the right and left sided derivatives, respectively, so that df

dt± (t) = limh→0±
f(t+h)−f(t)

h

then,

lim
t→0+

|t|−1 (1− k(t)) = lim
t→0+

|t|−1 (k(0)− k(t)) = − lim
t→0+

t−1 (k(t)− k(0)) = − dk

dt+
(0)

= − d

dt+

[∫ min(1,1+t)

max(0,t)
φ(u)φ(u− t)du

]
t=0

= − d

dt+

[∫ 1

t
φ(u)φ(u− t)du

]
t=0

= −
[
−φ(t)φ(0) +

∫ 1

t
−φ(u)φ′(u− t)du

]
t=0

= φ(0)2 +

∫ 1

0
φ(u)φ′(u)du = φ(0)2 +

1

2
φ(u)2

∣∣1
0

= φ(0)2 +
1

2

(
φ(1)2 − φ(0)2

)
=

1

2

(
φ(0)2 + φ(1)2

)
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lim
t→0−

|t|−1 (1− k(t)) = lim
t→0−

|t|−1 (k(0)− k(t)) = lim
t→0−

(−t)−1 (k(0)− k(t))

= lim
t→0−

t−1 (k(t)− k(0)) =
dk

dt−
(0)

=
d

dt−

[∫ min(1,1+t)

max(0,t)
φ(u)φ(u− t)du

]
t=0

=
d

dt−

[∫ 1+t

0
φ(u)φ(u− t)du

]
t=0

=

[
φ(1 + t)φ(1) +

∫ 1+t

0
−φ(u)φ′(u− t)du

]
t=0

= φ(1)2 −
∫ 1

0
φ(u)φ′(u)du = φ(1)2 − 1

2
φ(u)2

∣∣1
0

= φ(1)2 − 1

2

(
φ(1)2 − φ(0)2

)
=

1

2

(
φ(0)2 + φ(1)2

)

So the limit exists and k(1)(0) = limt→0 |t|−1 (1− k(t)) = 1
2

(
φ(0)2 + φ(1)2

)
.

The proof of the second part of the theorem is by induction. By hypothesis φ ∈ Cn[0, 1].

First assume that t > 0 and consider the hypothesis that dnk
dtn (t) =

∑n
i=1 (−1)iφ(n−i)(t)φ(i−1)(0) +

(−1)n
∫ 1
t φ(u)φ(n)(u− t)du. From the above, this clearly holds for n = 1. Now assume that it holds

for all n′ < n, then,
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dnk

dtn
(t) =

d

dt

dn−1k

dtn−1
=

d

dt

[
n−1∑
i=1

(−1)iφ(n−1−i)(t)φ(i−1)(0) + (−1)n−1
∫ 1

t
φ(u)φ(n−1)(u− t)du

]

=

n−1∑
i=1

(−1)iφ(n−i)(t)φ(i−1)(0) + (−1)n−1
[
d

dt

∫ 1

t
φ(u)φ(n−1)(u− t)du

]

=

n−1∑
i=1

(−1)iφ(n−i)(t)φ(i−1)(0) + (−1)n−1
[
−φ(t)φ(n−1)(0)−

∫ 1

t
φ(u)φ(n)(u− t)du

]

=
n−1∑
i=1

(−1)iφ(n−i)(t)φ(i−1)(0) + (−1)nφ(n−n)(t)φ(n−1)(0) + (−1)n
∫ 1

t
φ(u)φ(n)(u− t)du

=
n∑
i=1

(−1)iφ(n−i)(t)φ(i−1)(0) + (−1)n
∫ 1

t
φ(u)φ(n)(u− t)du

Thus, the hypothesis holds for n, so, by induction, the theorem holds for all n ∈ N , with t > 0.

Now assume that t < 0 and consider the hypothesis that dnk
dtn (t) =

∑n
i=1 (−1)i−1φ(n−i)(1 + t)φ(i−1)(1)+

(−1)n
∫ 1+t
0 φ(u)φ(n)(u− t)du. From the above, this clearly holds for n = 1. Now assume that it

holds for all n′ < n, then,

dnk

dtn
(t) =

d

dt

dn−1k

dtn−1
=

d

dt

[
n−1∑
i=1

(−1)i−1φ(n−1−i)(1 + t)φ(i−1)(1) + (−1)n−1
∫ 1+t

0
φ(u)φ(n−1)(u− t)du

]

=

n−1∑
i=1

(−1)i−1φ(n−i)(1 + t)φ(i−1)(1) + (−1)n−1
[
d

dt

∫ 1+t

0
φ(u)φ(n−1)(u− t)du

]

=

n−1∑
i=1

(−1)i−1φ(n−i)(1 + t)φ(i−1)(1) + (−1)n−1
[
φ(1 + t)φ(n−1)(1)−

∫ 1+t

0
φ(u)φ(n)(u− t)du

]

=

n−1∑
i=1

(−1)i−1φ(n−i)(1 + t)φ(i−1)(1) + (−1)n−1φ(n−n)(1 + t)φ(n−1)(1) + (−1)n
∫ 1+t

0
φ(u)φ(n)(u− t)du

=

n∑
i=1

(−1)i−1φ(n−i)(1 + t)φ(i−1)(1) + (−1)n
∫ 1+t

0
φ(u)φ(n)(u− t)du

Thus, the hypothesis holds for n, so, by induction, it holds for for all n ∈ N with t < 0.
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Note that, if k ∈ Cn−1, in a neighborhood of 0, then the above results also hold for the one-sided

nth derivatives at 0, as well. In particular, since φ ∈ Cn[0, 1], then dnk
dtn (t) will be continuous on

[−1, 1], except, perhaps, at 0; since φ and its first n derivatives are continuous, and, thus uniformly

bounded on [0, 1], this follows from an application of the Dominated Convergence Theorem to the

two expressions above. If the left and right derivatives are also equal at 0, then k ∈ Cn[−1, 1].

It is now useful to compute dnk
dtn (0). We first compute limt→0±

dnk
dtn (t).

lim
t→0+

dnk

dtn
(t) = lim

t→0+

[
n∑
i=1

(−1)iφ(n−i)(t)φ(i−1)(0) + (−1)n
∫ 1

t
φ(u)φ(n)(u− t)du

]

=
n∑
i=1

(−1)iφ(n−i)(0)φ(i−1)(0) + (−1)n
∫ 1

0
φ(u)φ(n)(u)du

lim
t→0−

dnk

dtn
(t) = lim

t→0−

[
n∑
i=1

(−1)i−1φ(n−i)(1 + t)φ(i−1)(1) + (−1)n
∫ 1+t

0
φ(u)φ(n)(u− t)du

]

=

n∑
i=1

(−1)i−1φ(n−i)(1)φ(i−1)(1) + (−1)n
∫ 1

0
φ(u)φ(n)(u)du

We will use integration by parts in order to reexpress
∫ 1
0 φ(u)φ(n)(u)du.
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∫ 1

0
φ(u)φ(n)(u)du = φ(u)φ(n−1)(u)|10 −

∫ 1

0
φ(1)(u)φ(n−1)(u)du

= φ(1)φ(n−1)(1)− φ(0)φ(n−1)(0)−
∫ 1

0
φ(1)(u)φ(n−1)(u)du

= φ(1)φ(n−1)(1)− φ(0)φ(n−1)(0)− φ(1)(u)φ(n−2)(u)|10 +

∫ 1

0
φ(2)(u)φ(n−2)(u)du

=

2∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
+ (−1)2

∫ 1

0
φ(2)(u)φ(n−2)(u)du

. . .

=
n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
+ (−1)n

∫ 1

0
φ(n)(u)φ(u)du

(1− (−1)n)

∫ 1

0
φ(u)φ(n)(u)du =

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]

For n odd,

∫ 1

0
φ(u)φ(n)(u)du =

1

2

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]

so
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lim
t→0+

dnk

dtn
(t) =

n∑
i=1

(−1)iφ(n−i)(0)φ(i−1)(0) + (−1)n
∫ 1

0
φ(u)φ(n)(u)du

=
n∑
i=1

(−1)iφ(n−i)(0)φ(i−1)(0)− 1

2

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
=

n∑
i=1

(−1)iφ(n−i)(0)φ(i−1)(0) +
1

2

n∑
i=1

(−1)i
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
=

1

2

n∑
i=1

(−1)i
[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]

lim
t→0−

dnk

dtn
(t) =

n∑
i=1

(−1)i−1φ(n−i)(1)φ(i−1)(1) + (−1)n
∫ 1

0
φ(u)φ(n)(u)du

=

n∑
i=1

(−1)i−1φ(n−i)(1)φ(i−1)(1)− 1

2

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
=

1

2

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]
= −1

2

n∑
i=1

(−1)i
[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]
= − lim

t→0+

dnk

dtn
(t)

For n even,

0 =

n∑
i=1

(−1)i−1
[
φ(i−1)(1)φ(n−i)(1)− φ(i−1)(0)φ(n−i)(0)

]
=

n∑
i=1

(−1)i−1φ(i−1)(1)φ(n−i)(1) +

n∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0)

so

n∑
i=1

(−1)i−1φ(i−1)(1)φ(n−i)(1) = −
n∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0)
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Note that, for n even,

n∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0)

=

n
2∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0) +

n∑
i=n

2
+1

(−1)iφ(i−1)(0)φ(n−i)(0)

=

n
2∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0) +
n∑

i=n
2
+1

(−1)(−1)(−1)n(−1)−iφ(n−(n−i+1))(0)φ((n−i+1)−1)(0)

=

n
2∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0)−
n∑

i=n
2
+1

(−1)n−i+1φ(n−(n−i+1))(0)φ((n−i+1)−1)(0)

=

n
2∑
i=1

(−1)iφ(i−1)(0)φ(n−i)(0)−

n
2∑
j=1

(−1)jφ(n−j)(0)φ(j−1)(0)

= 0

where j = n− i+ 1.

Thus,
∑n

i=1(−1)i−1φ(i−1)(1)φ(n−i)(1) = −
∑n

i=1(−1)iφ(i−1)(0)φ(n−i)(0) = 0, so limt→0+
dnk
dtn (t) =

limt→0−
dnk
dtn (t) =

∫ 1
0 φ(u)φ(n)(u)du.

Therefore, for n odd, limt→0+
dnk
dtn (t) = 1

2

∑n
i=1(−1)i

[
φ(i−1)(1)φ(n−i)(1) + φ(i−1)(0)φ(n−i)(0)

]
=

− limt→0+
dnk
dtn (t) and, for n even, limt→0+

dnk
dtn (t) = limt→0−

dnk
dtn (t) =

∫ 1
0 φ(u)φ(n)(u)du.

Thus, if n is even, φ ∈ Cn[0, 1], and k ∈ Cn−1[−1, 1], then, from the above, dnk
dtn+ (0) = dnk

dtn− (0) so

k ∈ Cn[−1, 1] and dnk
dtn (0) =

∫ 1
0 φ(u)φ(n)(u)du.

Finally, if φ generates a q = 2 kernel, then k(1)(0) = 0, so the left and right derivatives of k are

both 0 at 0, so k ∈ C1[−1, 1]. Then, k ∈ C2[1,−1] and k(2)(0) = −1
2
d2k
dt2

(0) = −1
2

∫ 1
0 φ(u)φ(n)(u)du.

�

8.2. Optimal Weights for q = 1 Orthogonal Series.

In this appendix, we will derive the optimal weights for a q = 1 orthogonal series. Recall that

every Weighted Orthogonal Series (WOS) has a limiting implied mean kernel kw =
∑B

i=b0
wiki,

where {wi}Bi=b0 is a sequence of weights and ki is the limiting implied mean kernel of the ith term in



28 THOMAS KOLOKOTRONES AND JAMES STOCK

the series. Then, k
(q)
w =

∑B
i=b0

wik
(q)
i , so, for q = 1 WOS estimators, Iq[kw] =

(
k
(q)
w (0)

) 1
q ∑

iw
2
i =∑B

i=b0
wik

(1)
i (0) ·

∑B
i=b0

w2
i . We will now minimize this quantity under the constraint

∑B
i=b0

wi = 1,

in order to obtain the optimal sequence of weights. We begin by constructing the Lagrangian,

setting its first derivative equal to zero, and then using this to solve for λ.

L =

B∑
i=b0

wik
(1)
i (0) ·

B∑
i=b0

w2
i + λ

1−
B∑
i=b0

wi



0 =
∂L
∂wi

= k
(1)
i (0) ·

B∑
i=b0

w2
i + 2wi ·

B∑
i=b0

wik
(1)
i (0)− λ

λ = k
(1)
i (0) ·

B∑
i=b0

w2
i + 2wi ·

B∑
i=b0

wik
(1)
i (0)

λ = (B − b0 + 1)−1
B∑
i=b0

k(1)i (0) ·
B∑
i=b0

w2
i + 2wi ·

B∑
i=b0

wik
(1)
i (0)


= (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0) ·

B∑
i=1

w2
i + 2

B∑
i=b0

wi ·
B∑
i=b0

wik
(1)
i (0)


= (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0) ·

B∑
i=1

w2
i + 2 ·

B∑
i=b0

wik
(1)
i (0)



We can then use this expression to eliminate λ from the first order condition giving,
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0 = k
(1)
i (0) ·

B∑
i=b0

w2
i + 2wi ·

B∑
i=b0

wik
(1)
i (0)− λ

= k
(1)
i (0) ·

B∑
i=b0

w2
i + 2wi ·

B∑
i=b0

wik
(1)
i (0)− (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0) ·

B∑
i=1

w2
i + 2 ·

B∑
i=b0

wik
(1)
i (0)


=

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

 · B∑
i=b0

w2
i +

(
wi − (B − b0 + 1)−1

)
· 2

B∑
i=b0

wik
(1)
i (0)

We can then rewrite this as,

wi = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

 · B∑
i=b0

w2
i ·

2
B∑
i=b0

wik
(1)
i (0)

−1

Let A = 1
2

(∑B
i=b0

wik
(1)
i (0)

)−1∑B
i=b0

w2
i , then

wi = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

We can feed this expression back into the definition of A in order to obtain a quadratic equation,

in terms of A, which we can then solve to obtain A as a function of the k
(1)
i s.
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2A =

 B∑
i=b0

(B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

 k
(1)
i (0)

−1

×
B∑
i=b0

(B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

2

=

 B∑
i=b0

(B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

 k
(1)
i (0)

−1

×
B∑
i=b0

(B − b0 + 1)−2 − 2(B − b0 + 1)−1

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

+

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

2

A2



=

(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A

−1

×

(B − b0 + 1)−1 − 2(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)−

B∑
i=b0

k
(1)
i (0)

A

+
B∑
i=b0

k(1)i (0)2 − 2k
(1)
i (0)(B − b0 + 1)−1

B∑
i=b0

k
(1)
i (0) + (B − b0 + 1)−2

 B∑
i=b0

k
(1)
i (0)

2A2



=

(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A

−1

×

(B − b0 + 1)−1 − 2(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)−

B∑
i=b0

k
(1)
i (0)

A

+

 B∑
i=b0

k
(1)
i (0)2 − 2(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2

+ (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2



=

(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A

−1

×

(B − b0 + 1)−1 +

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2


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2A

(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A


= (B − b0 + 1)−1 +

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2

0 = 3

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2 − 2(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0) ·A

+ (B − b0 + 1)−1

= (B − b0 + 1)−1

3

(B − b0 + 1)

B∑
i=b0

k
(1)
i (0)2 −

 B∑
i=b0

k
(1)
i (0)

2A2 − 2

B∑
i=b0

k
(1)
i (0) ·A+ 1


We can now use the quadratic formula to write A in terms of the weights and k(1)(0)is.

A =

2
∑B

i=b0
k
(1)
i (0)±

√(
2
∑B

i=b0
k
(1)
i (0)

)2
− 4 · 3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)
2 · 3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

=

∑B
i=b0

k
(1)
i (0)±

√(∑B
i=b0

k
(1)
i (0)

)2
− 3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)
3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

=

∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

Using this, we can now write the weights as functions of the k(1)(0)is.
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wi = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

= (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)



×

∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

Note that there is an unresolved ± in this expression. Thus, it is necessary to compute the

weights in both cases, check that they are nonnegative, and then use the set of (valid) weights

which gives the lowest value of Iq[kw]. We can use these weights to compute both k(1)(0) and∑B
i=b0

w2
i ,
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k(1)(0) =

B∑
i=b0

wik
(1)
i (0) =

B∑
i=b0

(B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

 k
(1)
i (0)

= (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A

= (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)−

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2

×

∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

= (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

− 1

3
(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)±

√√√√√4

 B∑
i=b0

k
(1)
i (0)

2

− 3(B − b0 + 1)
B∑
i=b0

k
(1)
i (0)2


=

2

3
(B − b0 + 1)−1

B∑
i=b0

k
(1)
i (0)

∓ 1

3
(B − b0 + 1)−1

√√√√√4

 B∑
i=b0

k
(1)
i (0)

2

− 3(B − b0 + 1)
B∑
i=b0

k
(1)
i (0)2
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B∑
i=b0

w2
i =

B∑
i=b0

(B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

2

=
B∑
i=b0

(B − b0 + 1)−2 − 2(B − b0 + 1)−1

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

A

+

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)

2

A2


= (B − b0 + 1)−1 − 2(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)−

B∑
i=b0

k
(1)
i (0)

A

+

B∑
i=b0

k(1)i (0)2 − 2(B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0) · k(1)i (0) + (B − b0 + 1)−2

 B∑
i=b0

k
(1)
i (0)

2A2

= (B − b0 + 1)−1 − 2 · 0 ·A

+

 B∑
i=b0

k
(1)
i (0)2 − 2(B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2

+ (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2

= (B − b0 + 1)−1 +

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2A2

= (B − b0 + 1)−1 +

 B∑
i=b0

k
(1)
i (0)2 − (B − b0 + 1)−1

 B∑
i=b0

k
(1)
i (0)

2

×


∑B

i=b0
k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)


2

= (B − b0 + 1)−1 +

(∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

)2

9(B − b0 + 1)

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)
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k(1)(0)

B∑
i=b0

w2
i =

2

3
(B − b0 + 1)−1

B∑
i=b0

k
(1)
i (0)

∓1

3
(B − b0 + 1)−1

√√√√√4

 B∑
i=b0

k
(1)
i (0)

2

− 3(B − b0 + 1)
B∑
i=b0

k
(1)
i (0)2



×

(B − b0 + 1)−1 +

(∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

)2

9(B − b0 + 1)

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)


8.3. Legendre Polynomials. The Legendre Polynomials, {Pi}, are a set of orthogonal polyno-

mials, typically defined on [−1, 1] that satisfy, Pi(0) = (−1)i, Pi(1) = 1 and are normalized to have

square norm 2(2i+ 1)−
1
2 , for the ith Legendre polynomial. Remapping their domain to the interval

[0, 1] will result in dividing their norms by 2, but will not alter their orthogonality. Therefore, if

we define φi(x) = (2i+ 1)
1
2Pi

(
1
2(x+ 1)

)
, then the φis will define an orthonormal series on [0, 1].

Using Proposition 7, k
(1)
i (0) = 1

2 ((2i+ 1) + (2i+ 1)) = 2i+ 1. Then,

B∑
i=b0

k
(1)
i (0) =

B∑
i=1

2i+ 1 = 2 · 1

2
B(B + 1) +B = B(B + 1) +B = B(B + 2)

B∑
i=1

k
(1)
i (0)2 =

B∑
i=1

(2i+ 1)2 =
B∑
i=1

4i2 + 4i+ 1 = 4 · 1

6
B(B + 1)(2B + 1) + 4 · 1

2
B(B + 1) +B

=
2

3
B(B + 1)(2B + 1) + 2B(B + 1) +B =

1

3

(
4B3 + 12B2 + 11B

)
Using the formula for optimal weights (with b0 = 1) gives,
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wi = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)



×

∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3B

∑B
i=b0

k
(1)
i (0)2

3

(
B
∑B

i=b0
k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)
= B−1 −

(
k
(1)
i (0)−B−1B(B + 2)

)
×
B(B + 2)±

√
4 (B(B + 2))2 − 3B · 13 (4B3 + 12B2 + 11B)

3
(
B · 13 (4B3 + 12B2 + 11B)− (B(B + 2))2

)
= B−1 −

(
k
(1)
i (0)−B − 2

) B(B + 2)±
√

4B3 + 5B2

3 · 13 (B4 −B2)

= B−1 −
(
k
(1)
i (0)−B − 2

) B + 2±
√

4B + 5

B (B2 −B)

k(1)(0) =
2

3
(B − b0 + 1)−1

B∑
i=b0

k
(1)
i (0)

∓ 1

3
(B − b0 + 1)−1

√√√√√4

 B∑
i=b0

k
(1)
i (0)

2

− 3(B − b0 + 1)

B∑
i=b0

k
(1)
i (0)2

=
2

3
B−1 ·B(B + 2)∓ 1

3
B−1

√
4B3 + 5B2

=
2

3
(B + 2)∓ 1

3

√
4B + 5

lim
B→∞

B−1k(1)(0) =
2

3
lim
B→∞

B−1(B + 2)∓ 1

3
lim
B→∞

B−1
√

4B + 5

=
2

3
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B∑
i=1

w2
i = B−1 +

(
B(B + 2)±

√
4B3 + 5B2

)2
9B · 13 (B4 −B2)

= B−1 +

(
B + 2±

√
4B + 5

)2
3B (B2 − 1)

lim
B→∞

B
B∑
i=1

w2
i = 1 + lim

B→∞

(
B + 2±

√
4B + 5

)2
3 (B2 − 1)

= 1 +
1

3

=
4

3

Then, the asymptotic value of Iq[k] is limB→∞ Iq[k] = limB→∞ k
(1)(0)

∑B
i=1w

2
i = 2

3 ·
4
3 = 8

9 . If we

instead used equal weights, so that wi = B−1 for i ≤ B, we would get k(1)(0) =
∑B

i=1B
−1(2i+1) =

B−1·B(B+2) = B+2,
∑B

i=1w
2
i =

∑B
i=1B

−2 = B−1, so Iq[k] = 1+2B−1 and limB→∞ Iq[k] = 1 > 8
9 .

8.4. Haar Wavelets.

We begin by computing the limiting implied kernel for each term in the system. Haar wavelets

are defined by the wavelet function ψ(x) = I[0, 1
2
)(x) − I[ 1

2
,1)(x), so that the Haar basis functions

are given by 1 and ψn,`(x) = 2
n
2 ψ(2nx− `) with n, ` ∈ Z+, 0 ≤ ` < 2n. Then, the limiting implied

kernel corresponding to the wavelet ψn,` is given by,
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kn,`(t) =

∫ min(1,1+t)

max(0,t)
ψn,`(u)ψn,`(u− t)du =

∫ min(1,1+t)

max(0,t)
2

n
2 ψ (2nu− `) 2

n
2 ψ (2n(u− t)− `) du

= 2n
∫ min(1,1+t)

max(0,t)

[
I[0, 1

2
) (2nu− `)− I[ 1

2
,1) (2nu− `)

] [
I[0, 1

2
) (2n(u− t)− `)− I[ 1

2
,1) (2n(u− t)− `)

]
du

= 2n
∫ 1

0
I[0, 1

2
) (2nu− `) I[0, 1

2
) (2n(u− t)− `)− I[0, 1

2
) (2nu− `) I[ 1

2
,1) (2n(u− t)− `)

− I[ 1
2
,1) (2nu− `) I[0, 1

2
) (2n(u− t)− `) + I[ 1

2
,1) (2nu− `) + I[ 1

2
,1) (2n(u− t)− `) du

= 2n
∫ 1

0
I
[
2−n` ≤ u, u− t < 2−n

(
`+ 2−1

)]
− I

[(
2−n` ≤ u < 2−n

(
`+ 2−1

))
∧
(
2−n

(
`+ 2−1

)
≤ u− t < 2−n (`+ 1)

)]
− I

[(
2−n

(
`+ 2−1

)
≤ u < 2−n (`+ 1)

)
∧
(
2−n` ≤ u− t < 2−n

(
`+ 2−1

))]
+ I

[
2−n

(
`+ 2−1

)
≤ u, u− t < 2−n (`+ 1)

]
du

= 2n
[
2−(n+1)

(
1− 2n+1|t|

)
I(−2−(n+1),2−(n+1))(t)− 2−(n+1)

(
1− |1 + 2n+1t|

)
I(−2−n,0](t)

−2−(n+1)
(
1−

∣∣1− 2n+1t
∣∣) I[0,2−n)(t) + 2−(n+1)

(
1− 2n+1|t|

)
I(−2−(n+1),2−(n+1))(t)

]
= 2−1 · 2

(
1− 2n+1|t|

)
I[0,2−(n+1))(|t|)− 2−1

(
1−

∣∣1− 2n+1|t|
∣∣) I[0,2−n)(|t|)

=
(
1− 2n+1|t|

)
I[0,2−(n+1))(|t|)− 2−1

(
2n+1|t|

)
I[0,2−(n+1))(|t|)

− 2−1
(
2− 2n+1|t|

)
I[2−(n+1),2−n)(|t|)

= (1− 3 · 2n|t|) I[0,2−(n+1))(|t|)− (1− 2n|t|) I[2−(n+1),2−n)(|t|)

where the fourth equality is due to the fact that the indicators in the wavelet function automatically

enforce that the integrand is 0 unless max(0, t) ≤ u ≤ min(1, 1 + t), as can be seen explicitly when

the indicator functions are rewritten in the fifth equality.

Note that this is independent of `, since, within each level of the hierarchy, the basis functions

are simply translations of each other, so we will simply write,

kn(t) = (1− 3 · 2n|t|)I[0,2−(n+1))(|t|)− (1− 2n|t|)I[2−(n+1),2−n)(|t|)

Then, it is clear that kn is a q = 1 kernel with
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k(1)n (0) = lim
t→0
|t|−1(1− (1− 3 · 2n|t|)) = 3 · 2n

∫
k2n(t)dt =

∫
(1− 3 · 2n|t|)2 I[0,2−(n+1))(|t|) + (1− 2n|t|)2 I[2−(n+1),2−n)(|t|)dt

= 2

∫ 2−(n+1)

0
(1− 3 · 2nt)2 dt+ 2

∫ 2−n

2−(n+1)

(1− 2nt)2 dt

= 2

[[
t− 1

2
2 · 3 · 2nt2 +

1

3
9 · 22nt3

]2−(n+1)

0

+

[
t− 1

2
2 · 2nt2 +

1

3
· 22nt3

]2−n

2−(n+1)

]

= 2

[[
t− 3 · 2nt2 + 3 · 22nt3

]2−(n+1)

0
+

[
t− 2nt2 +

1

3
· 22nt3

]2−n

2−(n+1)

]

= 2
[
2−(n+1) − 3 · 2n2−2(n+1) + 3 · 22n2−3(n+1)

]
+ 2

[
2−n − 2n2−2n +

1

3
· 22n2−3n −

(
2−(n+1) − 2n2−2(n+1) +

1

3
· 22n2−3(n+1)

)]
= 2

[
2−n−1 − 3 · 2−n−2 + 3 · 2−n−3

]
+ 2

[
2−n − 2−n +

1

3
2−n −

(
2−n−1 − 2−n−2 +

1

3
· 2−n−3

)]
= 2−n

[
1− 3 · 2−1 + 3 · 2−2

]
+ 2−n

[
2

3
−
(

1− 2−1 +
1

3
2−2
)]

= 2−n
1

4
+ 2−n

[
2

3
− 1

2
− 1

12

]
= 2−n

[
1

4
+

1

12

]
=

1

3
· 2−n

It is interesting to note that, for an individual kernel, Iq[kn] = k
(1)
n (0)·

∫
k2n(t)dt = 3·2n· 13 ·2

−n = 1.

Let n′ > n, then,
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∫
kn(t)kn′(t)dt =

∫ (
(1− 3 · 2n|t|) I[0,2−(n+1))(|t|)− (1− 2n|t|) I[2−(n+1),2−n)(|t|)

)
×
((

1− 3 · 2n′ |t|
)
I[

0,2−(n
′+1)

)(|t|)−
(

1− 2n
′ |t|
)
I[

2−(n
′+1),2−n′

)(|t|)
)
dt

=

∫ [(
1− 3 ·

(
2n + 2n

′
)
|t|+ 9 · 2n+n′t2

)
I[0,2−(n′+1))(|t|)

−
(

1−
(

3 · 2n + 2n
′
)
|t|+ 3 · 2n+n′t2

)
I[

2−(n
′+1),2−n′

)(|t|)
]
dt

= 2

∫ 2−(n
′+1)

0
1− 3 ·

(
2n + 2n

′
)
t+ 9 · 2n+n′t2dt

− 2

∫ 2−n′

2−(n
′+1)

1−
(

3 · 2n + 2n
′
)
t+ 3 · 2n+n′t2dt

= 2

[
t− 3

2
·
(

2n + 2n
′
)
t2 + 3 · 2n+n′t3

]2−(n′+1)

0

− 2

[
t− 1

2

(
3 · 2n + 2n

′
)
t2 + 2n+n

′
t3
]2−n′

2−(n
′+1)

= 2

[
2−(n

′+1) − 3

2
·
(

2n + 2n
′
)

2−2(n
′+1) + 3 · 2n+n′2−3(n′+1)

]
− 2

[
2−n

′ − 1

2

(
3 · 2n + 2n

′
)

2−2n
′
+ 2n+n

′
2−3n

′
]

+ 2

[
2−(n

′+1) − 1

2

(
3 · 2n + 2n

′
)

2−2(n
′+1) + 2n+n

′
2−3(n

′+1)

]
=
(

2−n
′ − 2−(n

′−1) + 2−n
′
)
−
(
3 · 2−2 − 3 + 3 · 2−2

)
2n2−2n

′

−
(
3 · 2−2 − 1 + 2−2

)
2n
′
2−2n

′
+
(
3 · 2−2 − 2 + 2−2

)
2n
′+n2−3n

′

= 0− 3
(
2−1 − 1

)
2n−2n

′ − 0 · 2−n′ + (1− 2)2n−2n
′

=
3

2
· 2n−2n′ − 2n−2n

′
=

1

2
· 2n−2n′ = 2n−2n

′−1

= 2(n−n
′)−n′−1

Summing this over n′ > n gives,
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∑
n′>n

2(n−n
′)−n′−1 = 2−n−3

∑
n′>n

2−2(n
′−n−1) = 2−n−3

∞∑
i=0

2−2i = 2−n−3
(
1− 2−2

)−1
= 2−n−3

(
3

4

)−1
=

4

3
· 2−n−3 =

1

3
· 2−(n+1) =

1

2
· 1

3
· 2−n

=
1

2

∫
k2n(t)dt

Since
∑

n,n′
∫
kn(t)kn′(t)dt contains 2 copies of

∫
kn(t)kn′(t)dt for n′ 6= n, the sum of all terms of

the form
∫
kn(t)kn′(t)dt with n′ > n is 2 · 12

∫
k2n(t)dt =

∫
k2n(t)dt = 1

3 · 2
−n, so the sum of the cross

terms is equal to the sum of the diagonal terms
∫
k2n(t)dt. We can now compute k

(1)
w (0),

∫
k2w(t)dt,

and Iq[kw]

k(1)w (0) = lim
t→0
|t|−1(1− kw(t)) = lim

t→0
|t|−1

(
1−

N∑
n=1

wnkn(t)

)
= lim

t→0
|t|−1

N∑
n=1

wn(1− kn(t))

=

N∑
n=1

wn

(
lim
t→0
|t|−1(1− kn(t))

)
=

N∑
n=1

wnk
(1)
n (0) =

N∑
n=1

wn · 3 · 2n

= 3

N∑
n=1

wn · 2n

∫
k2w(t)dt =

∫ ( N∑
n=1

wnkn(t)

)2

dt =
N∑

n,n′=1

∫
wnwn′kn(t)kn′(t)dt

=
N∑
n=1

(
w2
n

∫
k2n(t)dt+ 2wn

∑
n′<n

wn′

∫
kn(t)kn′(t)dt

)

=
N∑
n=1

(
1

3
· 2−n · w2

n + 2wn
∑
n′<n

wn′ · 2n
′−2n−1

)

=
N∑
n=1

2−n

(
1

3
· w2

n + wn · 2−n
∑
n′<n

wn′ · 2n
′

)
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Iq[kw] = k(1)w (0)

∫
k2w(t)dt = 3

∑
n

wn · 2n ·
∑
n

2−n

(
1

3
· w2

n + wn · 22n+1
∑
n′>n

w′n · 2−(2n
′+1)

)

Using equal weights for each basis function, and noting that for each level, n, there are 2n basis

functions, wn =
(∑N

n=1 2n
)−1

2n =
(
2N+1 − 1

)−1
2n. Then we get:

k(1)w (0) =

N∑
n=0

wnk
(1)
n (0) = 3

∑
n

wn · 2n = 3

N∑
n=0

(
2N+1 − 1

)−1
2n · 2n = 3

(
2N+1 − 1

)−1 N∑
n=0

22n

= 3
(
2N+1 − 1

)−1 N∑
n=0

4n = 3
(
2N+1 − 1

)−1 4N+1 − 1

4− 1
= 3

(
2N+1 − 1

)−1 4N+1 − 1

3

=
4N+1 − 1

2N+1 − 1
=

(
2N+1

)2 − 1

2N+1 − 1
= 2N+1 + 1
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∫
k2w(x)dx =

∫ ( N∑
n=0

wnkn(x)

)2

dx =

N∑
n=0

2−n

(
1

3
· w2

n + wn · 2−n
∑
n′<n

wn′ · 2−n
′

)

=
N∑
n=0

2−n

(
1

3
·
((

2N+1 − 1
)−1

2n
)2

+
(
2N+1 − 1

)−1
2n · 2−n

n−1∑
n′=0

(
2N+1 − 1

)−1
2n
′ · 2n′

)

=
(
2N+1 − 1

)−2 N∑
n=0

2−n

(
1

3
· 22n + 2n · 2−n

n−1∑
n′=0

22n
′

)

=
(
2N+1 − 1

)−2 N∑
n=0

(
1

3
· 2n + 2−n

n−1∑
n′=0

4n
′

)

=
(
2N+1 − 1

)−2 N∑
n=0

(
1

3
· 2n + 2−n

4n − 1

4− 1

)
=
(
2N+1 − 1

)−2 N∑
n=0

(
1

3
· 2n +

1

3
· 2−n (4n − 1)

)

=
1

3
·
(
2N+1 − 1

)−2 N∑
n=0

(
2n +

(
2n − 2−n

))
=

1

3
·
(
2N+1 − 1

)−2 N∑
n=0

(
2n+1 − 2−n

)
=

1

3

(
2N+1 − 1

)−2(
2 · 2N+1 − 1

2− 1
− 1− 2−(N+1)

1− 2−1

)

=
2

3

(
2N+1 − 1

)−2 (
2 ·
(
2N+1 − 1

)
− 2 · 2−(N+1)

(
2N+1 − 1

))
=

2

3
· 1− 2−(N+1)

2N+1 − 1

=
2

3
· 2−(N+1)

Iq[kw] = k
(1)
2 (0)

∫
k2w(x)dx =

(
2N+1 + 1

)
· 2

3
· 2−(N+1) =

2

3

(
1 + 2−(N+1)

)
Finally, we can also compute the sum of squared weights, for the implied kernel,

N∑
n=0

w2
n =

N∑
n=0

(
2N+1 − 1

)−2
22n =

(
2N+1 − 1

)−2 N∑
n=0

4n =
(
2N+1 − 1

)−2 4N+1 − 1

4− 1

= 3−1
2N+1 + 1

2N+1 − 1
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Note that this is actually not the value that is used when computing Iq[k] for the orthogonal

series estimator. For that, we count each basis function separately, which gives,

N∑
n=0

w2
n,s =

N∑
n=0

2n
(
2N+1 − 1

)−2
=
(
2N+1 − 1

)−2 N∑
n=0

2n =
(
2N+1 − 1

)−2 2N+1 − 1

2− 1

=
(
2N+1 − 1

)−1
Then, for the equal weighted orthogonal series, we get,

Iq[ks] = k(1)w (0) ·
N∑
n=0

w2
n,s =

(
2N+1 + 1

) (
2N+1 − 1

)−1
=

2N+1 + 1

2N+1 − 1

To summarize, for the orthogonal series generated by the Haar system using equal weights for

each basis function,

k(1)w (0) = 2N+1 + 1∫
k2w(t)dt =

2

3
· 2−(N+1)

Iq[kw] =
2

3

(
1 + 2−(N+1)

)
N∑
n=0

w2
n = 3−1

2N+1 + 1

2N+1 − 1

N∑
n=0

w2
n,s =

(
2N+1 − 1

)−1
Iq[ks] =

2N+1 + 1

2N+1 − 1

We can also use this to compute the optimal weights for the Haar orthogonal series. Since each

level n, has 2n wavelets within it, we need to include this factor in all sums,
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N∑
n=0

2nk(1)n (0) =
N∑
n=0

2n · 3 · 2n = 3
N∑
n=0

4n = 3 · 4N+1 − 1

4− 1
= 3 · 1

3

(
4N+1 − 1

)
= 4N+1 − 1

N∑
n=0

2n
(
k(1)n (0)

)2
=

N∑
n=0

2n (3 · 2n)2 =
N∑
n=0

2n · 9 · 4n = 9
N∑
n=0

8n = 9 · 8N+1 − 1

8− 1

=
9

7

(
8N+1 − 1

)
We can now compute the weights,

wn = (B − b0 + 1)−1 −

k(1)i (0)− (B − b0 + 1)−1
B∑
i=b0

k
(1)
i (0)



×

∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

3

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)
=
(
2N+1 − 1

)−1 − (k(1)n (0)−
(
2N+1 − 1

)−1 (
4N+1 − 1

))
×

(
4N+1 − 1

)
±
√

4 (4N+1 − 1)2 − 3 (2N+1 − 1) 9
7 (8N+1 − 1)

3
(

(2N+1 − 1) 9
7 (8N+1 − 1)− (4N+1 − 1)2

)
=
(
2N+1 − 1

)−1 − (k(1)n (0)−
(
2N+1 − 1

)−1 (
4N+1 − 1

))
×

(
4N+1 − 1

)
±
√

4 (4N+1 − 1)2 − 27
7 (2N+1 − 1) (8N+1 − 1)

3
(
9
7 (2N+1 − 1) (8N+1 − 1)− (4N+1 − 1)2

)
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k(1)(0) =
B∑
i=b0

wik
(1)
i (0)

=
2

3
(B − b0 + 1)−1

B∑
i=b0

k
(1)
i (0)

∓ 1

3
(B − b0 + 1)−1

√√√√√4

 B∑
i=b0

k
(1)
i (0)

2

− 3(B − b0 + 1)
B∑
i=b0

k
(1)
i (0)2

=
2

3

(
2N+1 − 1

)−1 (
4N+1 − 1

)
∓ 1

3

(
2N+1 − 1

)−1√
4 (4N+1 − 1)2 − 3 (2N+1 − 1) · 9

7
(8N+1 − 1)

=
2

3

(
2N+1

)2 − 1

2N+1 − 1
∓ 1

3

√
4

(
4N+1 − 1

2N+1 − 1

)2

− 27

7
· 8N+1 − 1

2N+1 − 1

=
2

3

(
2N+1 + 1

)
∓ 1

3

√
4 (2N+1 + 1)2 − 27

7
· 8N+1 − 1

2N+1 − 1

lim
n→∞

(
2N+1 − 1

)−1
k(1)(0) = lim

n→∞

[
2

3
∓ 1

3

√
4

(
2N+1 + 1

2N+1 − 1

)2

− 27

7
· 8N+1 − 1

(2N+1 − 1)3

]

=
2

3
∓ 1

3

√
4 · 12 − 27

7
· 1

=
2

3
∓ 1

3

√
7−1

=
2∓ 7−

1
2

3
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B∑
i=b0

w2
i = (B − b0 + 1)−1 +

(∑B
i=b0

k
(1)
i (0)±

√
4
(∑B

i=b0
k
(1)
i (0)

)2
− 3(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2

)2

9(B − b0 + 1)

(
(B − b0 + 1)

∑B
i=b0

k
(1)
i (0)2 −

(∑B
i=b0

k
(1)
i (0)

)2)

=
(
2N+1 − 1

)−1
+

((
4N+1 − 1

)
±
√

4 (4N+1 − 1)2 − 3 (2N+1 − 1) · 97 (8N+1 − 1)

)2

9 (2N+1 − 1)
(

(2N+1 − 1) · 97 (8N+1 − 1)− (4N+1 − 1)2
)

=
(
2N+1 − 1

)−1
+

((
4N+1 − 1

)
±
√

4 (4N+1 − 1)2 − 27
7 (2N+1 − 1) (8N+1 − 1)

)2

9 (2N+1 − 1)
(
9
7 (2N+1 − 1) (8N+1 − 1)− (4N+1 − 1)2

)

=
(
2N+1 − 1

)−1
+

(
1±

√
4− 27

7 (4N+1 − 1)−2 (2N+1 − 1) (8N+1 − 1)

)2

9 (2N+1 − 1)
(
9
7 (4N+1 − 1)−2 (2N+1 − 1) (8N+1 − 1)− 1

)

lim
N→∞

(
2N+1 − 1

) B∑
i=b0

w2
i = lim

N→∞

1 +

(
1±

√
4− 27

7 (4N+1 − 1)−2 (2N+1 − 1) (8N+1 − 1)

)2

9
(
9
7 (4N+1 − 1)−2 (2N+1 − 1) (8N+1 − 1)− 1

)


= 1 +

(
1±

√
4− 27

7 · 1
)2

9
(
9
7 · 1− 1

) = 1 +

(
1± 7−

1
2

)2
9 (2 · 7−1)

= 1 +

(
7

1
2 ± 1

)2
18

Then,

lim
N→∞

Iq [kw,s] =

(
2∓ 7−

1
2

3

)1 +

(
7

1
2 ± 1

)2
18


≈ .94, .91


