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In-sample and Out-of-sample Sharpe Ratios of

Multi-factor Asset Pricing Models

Abstract

For many multi-factor asset pricing models proposed in the recent literature, their implied

tangency portfolios have substantially higher sample Sharpe ratios than that of the value-

weighted market portfolio. In contrast, such high sample Sharpe ratio is rarely delivered by

professional fund managers. This makes it difficult for us to justify using these asset pricing

models for performance evaluation. In this paper, we explore if estimation risk can explain

why the high sample Sharpe ratios of asset pricing models are difficult to realize in reality.

In particular, we provide finite sample and asymptotic analyses of the joint distribution of

in-sample and out-of-sample Sharpe ratios of a multi-factor asset pricing model. For an

investor who does not know the mean and covariance matrix of the factors in a model, the

out-of-sample Sharpe ratio of an asset pricing model is substantially worse than its in-sample

Sharpe ratio. After taking into account of estimation risk, our analysis suggests that many of

the newly proposed asset pricing models do not provide superior out-of-sample performance

than the value-weighted market portfolio.



For performance evaluation, earlier literature typically uses the value-weighted market

portfolio as the benchmark portfolio, as suggested by the capital asset pricing model (CAPM)

of Sharpe (1964) and Lintner (1965). Over time, finance researchers find that the CAPM

fails to completely explain the cross-section of expected returns of stocks, especially when

they are grouped based on various firm characteristics (like size and book-to-market). As

a result, many multi-factor asset pricing models were proposed to remedy the shortcomings

of the CAPM and these new asset pricing models are now routinely used for performance

evaluation.

In this paper, we first empirically examine the performence of the CAPM and seven

popular multi-factor asset pricing models. The seven multi-factor models are: (1) Fama

and French (1993) 3-factor model (FF-3), which adds size and book-to-market factor to the

CAPM, (2) Carhart (1997) 4-factor model (Carhart-4), which adds the momentum factor

to FF-3, (3) Betting against beta (BAB) of Frazzini and Pedersen (2014), which adds the

return difference of low and high beta portfolios as an additional factor to the CAPM, (4)

Fama and French (2015) 5-factor model (FF-5), which adds profitability and investment

factors to FF-3, (5) Hou, Xue, and Zhang (2015) q-factor model (HXZ q), which adds size,

investment and profitability factors to the market factor, (6) Barillas and Shanken (2018)

6-factor model (BS-6). The BS-6 model combines the market factor, size factor, momentum

factor, HXZ’s profitability and investment factors, and a monthly updated book-to-market

factor from Asness and Frazzini (2013), and (7) Hou, Mo, Xue, and Zhang (2019) q5 model

(HMXZ q5), which adds an expected growth factor to Hou, Xue, and Zhang (2015) q-factor

model.

We notice one common feature for these multi-factor models, i.e., they all deliver very high

sample Sharpe ratios. Over the period 1967/1–2018/12, the value-weighted market portfolio

has a monthly sample Sharpe ratio of 0.117, and the seven multi-factor asset pricing models

can produce a monthly sample Sharpe ratio from 0.195 for FF-3 to 0.634 for HMXZ q5.

In addition, it is interesting to note that the sample Sharpe ratios for asset pricing models

are steadily increasing over time. It started with 0.117 for the CAPM of 1964, increased to

0.195 for the 3-factor model proposed in Fama and French (1993, FF-3), and finally reached

0.634 for the q5 model recommended in Hou, Mo, Xue, and Zhang (2019, HMXZ q5). The

increase of sample Sharpe ratio for newer asset pricing model is not entirely surprising given

the recent work of Barillas and Shanken (2017), in which they suggest that comparison of

the performance of models with traded factors can be simply reduced to comparison of their

1



Sharpe ratios, and such comparison is independent of the choice of test assets. Naturally,

superior asset pricing model that is uncovered over time should have higher Sharpe ratio

than the Sharpe ratios of asset pricing models in the past. Continuing at this rate, we can

expect future generation of asset pricing models to deliver even higher sample Sharpe ratios.

Given that so many of the recent asset pricing models can generate substantially higher

Sharpe ratios than that of the value-weighted market portfolio, one would expect many

of the professional investors, like mutual fund managers, ought to be able to do the same.

Unfortunately, the empirical data tell us a different story. Over our sample period of 1993/1–

2018/12, only 34.83% of the funds outperform the CAPM based on the before-fee sample

Sharpe ratio.1 Comparing with the HMXZ q5 model, the proportion of the funds beating the

benchmark decreases to barely 0.03%. It is entirely possible that mutual fund managers, as

a group, are not very good investors when compared with the finance academics. So we shift

our attention to the performance of Berkshire Hathaway Inc. (ticker symbol: BRK.A), which

was managed by Warren Buffett, arguably the most illustrious investor of our generation.

The sample Sharpe ratio of BRK.A over the period 1976/11–2018/12 is 0.228. It only out-

performed the CAPM and FF-3 (with sample Sharpe ratios of 0.142 and 0.205, respectively)

but underperformed the other six asset pricing models, which have sample Sharpe ratios

ranging from 0.287 to 0.608 over the same period.2

The mutual fund results and the performance of Berkshire Hathaway Inc. are surprising.

Given that we look at so many funds, one would like to think that even in the absence of

ability, some funds should have done better than the benchmark simply because of luck. The

fact that almost no mutual funds, and even not the best investor of our generation, were able

to beat the benchmark suggests something might be wrong with the benchmark. There are

many possible explanations as to why real world investors did not get Sharpe ratios that are

nearly as large as what is suggested by the academic multi-factor models. One possibility is

that investors are not mean-variance investors and they are not trying to hold the portfolio

with maximum Sharpe ratio. For example, investors may have utility function that would

make them care about higher order moments, and they may want to avoid the portfolio with

maximum Sharpe ratio if it comes with some undesirable distributional properties.3 A second

1We focus on the before-fee Sharpe ratio because it reflects what a mutual fund manager can actually
accomplish.

2Frazzini, Kabiller, and Pedersen (2018) suggest that Buffett generated insignificant alpha once we control
for the “betting against beta” factor and “quality minus junk” factor of Asness, Frazzini, and Pedersen (2019).

3While this is possible, it would have a hard time explaining why mutual fund managers are not interested
in holding portfolios with high Sharpe ratios because they are often evaluated based on their Sharpe ratios.
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possibility is that frictions in the markets (e.g., short-selling constraints, transaction costs,

and taxes) prevent investors from realizing the observed returns in those factor portfolios,

especially those that involve long-short portfolios (see Novy-Marx and Velikov (2016), Patton

and Weller (2019), and Detzel, Novy-Marx, and Velikov (2019)). A third possibility is that

the multi-factor asset pricing models are subject to the repeating testing problem (see Lo

and MacKinlay (1990) and Harvey and Liu (2013)), and the surviving models today may

have unusually high sample Sharpe ratios as compared with their population Sharpe ratios.

This is particularly true for models that are motivated by anomalies, but models that are

motivated by theories are not immune to this problem.

In this paper, we focus on the fourth possibility. That is, investors cannot get those sample

Sharpe ratios because of estimation risk. The empirically obtained Sharpe ratios for multi-

factor models are in-sample Sharpe ratios. The in-sample Sharpe ratio is computed based

on the ex post tangency portfolio and it is not attainable by investors. While researchers

typically use in-sample Sharpe ratio to estimate population Sharpe ratio, the population

Sharpe ratio is also not directly relevant for investors unless they know the true mean and

covariance matrix of the factors. If investors have only historical data to work with, they

can get neither the in-sample Sharpe ratio nor the population Sharpe ratio as implied by the

asset pricing model. What investors can get is the out-of-sample Sharpe ratio of the sample

optimal portfolio, and this is subject to estimation risk.

Our empirical analysis suggests that the out-of-sample Sharpe ratio of a multi-factor

model tends to be significantly inferior to its in-sample Sharpe ratio. Taking into account

estimation errors, it is not entirely clear whether a multi-factor asset pricing model can deliver

superior out-of-sample Sharpe ratio than the market portfolio (which has no estimation risk).

Relative to the out-of-sample Sharpe ratios of various multi-factor asset pricing models,

mutual fund performance looks much better. We see more mutual funds can beat various

multi-factor asset pricing models out-of-sample.

However, one cannot draw definite conclusion based on our empirical results on the out-

of-sample performance of asset pricing models because they are only point estimates and

are subject to sampling fluctuations.4 The out-of-sample performance is sensitive to the

length of the estimation window as well as the choice of the out-of-sample period. Instead of

relying only on the sample estimates, we need to understand the distributional property of

4Our sub-period empirical results confirm that the out-of-sample Sharpe ratio of the multi-factor asset
pricing models can be very volatile.
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the out-of-sample Sharpe ratio of a multi-factor asset pricing model. This calls for a serious

theoretical analysis.

Under the assumption that returns of traded factors of an asset pricing model are

i.i.d. multivariate normally distributed over time, we derive a simple stochastic represen-

tation of the in-sample and out-of-sample Sharpe ratios of an asset pricing model. Such

representation enables us to obtain the finite sample marginal and joint distribution of the

in-sample and out-of-sample Sharpe ratios. We show that the out-of-sample Sharpe ratio is

always lower than the population Sharpe ratio, and that the in-sample Sharpe ratio is an

upward biased estimator of the population Sharpe ratio. The gap between the in-sample

and out-of-sample Sharpe ratios can be significant and as a result the in-sample Sharpe ratio

of a multi-factor model does not give a reliable prediction of what an investor can obtain

out of sample. However, at the same time, we find that, even though the factor returns are

assumed to be i.i.d. over time, the in-sample and out-of-sample Sharpe ratios are positively

correlated. Such dependence suggests that conditional on the realized in-sample Sharpe ra-

tio, investors are able to make better inference about the out-of-sample Sharpe ratio. We

show how investors can make inferences of the distribution of the out-of-sample Sharpe ratio

of an asset pricing model based on our theoretical results. With the ability to make such an

inference, investors will be in a better position to make a judgement of whether to invest in

the factors suggested by an asset pricing model.

Although we provide the exact distribution of the in-sample and out-of-sample Sharpe

ratios of an asset pricing model, researchers may opt to use the asymptotic distribution

because asymptotic distribution is often simpler to use than the finite sample distribution.

The simple stochastic representation of the in-sample and out-of-sample Sharpe ratios de-

rived in this paper provides an easy way to obtain their limiting distributions. We consider

the limiting distribution of the in-sample and out-of-sample Sharpe ratios under different

assumptions of the number of factors (N) and number of periods (T ). When N is fixed and

T → ∞, the limiting distribution of the in-sample Sharpe ratio is well known, but that of

the out-of-sample Sharpe ratio is new. We also provide the limiting distribution for the case

when N → ∞ and T → ∞ but N/T → ρ ∈ (0, 1). This limiting distribution is not easy to

obtain and is currently unavailable in the literature.

With our exact distribution results, we can evaluate the accuracy of the two asymptotic

distributions. In approximating the exact distribution of the in-sample Sharpe ratio, the

traditional fixed N asymptotic does not perform well but the fixed N/T asymptotic works
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very well, even when N is small. In approximating the exact distribution of the out-of-sample

Sharpe ratio, the fixed N asymptotic works well for very small N . As N increases, the fixed

N/T asymptotic does a better job than the fixed N asymptotic, but both approximations

significantly deviate from the exact distribution. Therefore, unless N is very small, one is

better off using the exact distribution to draw inference.

The remainder of the paper is organized as follows. Section I presents the empirical

results that motivate our theoretical analysis. Section II outlines the problem and presents

the finite sample analysis of in-sample and out-of-sample Sharpe ratios of an asset pricing

model with multiple factors. Section III presents two different asymptotic distributions of

the in-sample and out-of-sample Sharpe ratios of a multi-factor asset pricing model and

evaluates the accuracy of the two asymptotic distributions. Section IV discusses methods

for inferring the distribution of out-of-sample Sharpe ratio of a multi-factor asset pricing

model based on our finite sample results. The final section concludes and the Appendix

contains all the proofs of the paper.

I. Empirical Results

A. Factor Data and In-sample Sharpe Ratios

In our empirical exercise, we consider eight popular asset pricing models. They are (1)

CAPM of Sharpe (1964) and Lintner (1965), (2) Fama-French (1993) 3-factor model (FF-3),

(3) Carhart (1997) 4-factor model (Carhart-4), (4) Betting against beta (BAB) of Frazzini

and Pedersen (2014), (5) Fama-French (2015) 5-factor model (FF-5), (6) Hou, Xue, and

Zhang (2015) q-factor model (HXZ q), (7) Barillas and Shanken (2018) 6-factor model (BS-

6), and (8) Hou, Mo, Xue, and Zhang (2019) q5 model (HMXZ q5). The sample period is

1967/1–2018/12. Monthly factor returns of CAPM, FF-3, Carhart-4, FF-5 are obtained from

Ken French’s website. Monthly returns of the betting-against-beta factor in BAB and the

monthly updated value factor in BS-6 are available from AQR’s website. We thank Kewei

Hou for sharing the data for the q and q5 factors with us.

Table I about here

In Table I, we report the maximum sample Sharpe ratio that one can obtain based on

the factors from the eight asset pricing models using data from the full sample period (1967–
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2018) as well as two subperiods (1967–1992 and 1993–2018). The year in which the model

was first published is also included in the table. In addition, p-values based on the Gibbons-

Ross-Shanken F -test, comparing the Sharpe ratio of a given model with that of the CAPM,

are also reported in the table.

Over the period 1967/1–2018/12, the value-weighted market portfolio (i.e., CAPM) has

a monthly sample Sharpe ratio of 0.117, and the other asset pricing models all produce

significantly higher (at 1% level) Sharpe ratios than that of the value-weighted market port-

folio. It is interesting to note that the sample Sharpe ratios for asset pricing models are

steadily increasing with their dates of publication. It started with 0.117 for the CAPM of

1964, increased to 0.195 for FF-3 of 1993, and finally reached 0.634 for HMXZ q5 of 2019.

Continuing at this rate, we can expect future generation of asset pricing models to deliver

even higher sample Sharpe ratios.

The same pattern holds across the two subperiods (1967/1–1992/12 and 1993/1–2018/12),

although the sample Sharpe ratios of all the asset pricing models (other than the CAPM)

are higher in the first subperiod. Note that except for the CAPM, all the other models are

published in the second subperiod.

B. Mutual Fund Data

We obtain monthly mutual fund after-fee return data over the period of 1993/1–2018/12 from

the CRSP Survivor-bias-free US Mutual Fund database. Before-fee returns are computed by

adding back one-twelfth of the annual expense ratio to the after-fee returns. A mapping file

from MFLINKs is used to aggregate returns of different classes of the same fund portfolio

based on the total net assets (MTNA) at the beginning of the period.

We focus on active domestic equity funds. Domestic equity funds are identified when

the first two letters of ‘crsp obj cd’ is ‘ED’ and the third letter is either ‘C’ or ‘Y’, but the

third and the fourth letters are not ‘YH’ or ‘YS’ and ‘si obj cd’ is not ‘OPI’. We exclude

index funds from our sample. Index funds are identified by checking whether the name of

the funds contain the word ‘index’ or ‘idx’.

We examine fund performance in terms of their Sharpe ratios. For a given fund, we

compute both before-fee and after-fee Sharpe ratios using monthly return data. Although

the after-fee Sharpe ratios are more relevant to investors, the before-fee Sharpe ratios reflect

what mutual fund managers can actually accomplish, which is our focus. We obtain fund
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Sharpe ratios for the sample period 1993–2018 as well as two subperiods 1993–2005 and

2006–2018. For a fund to be included in our sample for a given period, we require the fund

to have at least 60 non-missing monthly return data in the period. This results in 3,494

funds in the period of 1993–2018, and 2,107 and 2,513 funds in the subperiod of 1993–2005

and 2006–2018 respectively.

Table II about here

In Table II, we report the cross-sectional mean, median, first and third quartile of sample

Sharpe ratios of the mutual funds in our sample, and compare the fund performance with the

sample Sharpe ratios of various asset pricing models as documented in Table I. Table II shows

that in terms of before-fee sample Sharpe ratio, only 34.83% of the funds outperformed the

value-weighted market portfolio of the CAPM. For the FF-3 model, only 17.60% of the funds

were able to deliver higher Sharpe ratio. The percentage of funds that can outperform the

more recent asset pricing models is very small. Comparing with the HMXZ q5 model, only

one out of 3494 funds (i.e., 0.03%) can deliver higher before-fee Sharpe ratio. Similar results

hold for both subperiods, but the underperformance of mutual funds relative to multi-factor

asset pricing models is more notable in the first subperiod than in the second subperiod. For

example, for the first subperiod of 1993/1–2005/12, only 1% of the mutual funds have higher

before-fee Sharpe ratio than the FF-3 model; whereas for the second subperiod of 2006/1–

2018/12, 16.99% of the mutual funds deliver higher before-fee Sharpe ratio than that of the

FF-3 model. However, for both subperiods, there is only one fund that has higher before-fee

Sharpe ratio than that of the HMXZ q5 model.

C. Out-of-sample Sharpe Ratios

Note that the Sharpe ratios for the multi-factor models in Table I are in-sample Sharpe

ratios. The in-sample Sharpe ratio is computed based on the ex post tangency portfolio and

it is not attainable by investors. When investors do not know the true mean and covariance

matrix of the traded factors and they have only historical data to work with, they cannot

get the in-sample Sharpe ratio or the population Sharpe ratio as implied by the asset pricing

model. What investors can get is the out-of-sample Sharpe ratio of the sample optimal

portfolio, which is subject to estimation risk.

To get some idea of how estimation risk can affect the out-of-sample performance of
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multi-factor asset pricing models, we consider a situation where the investor has to estimate

the optimal portfolio using historical data. We consider an out-of-sample period of 1993/1–

2018/12 (which coincides with the sample period of the mutual fund data) as well as its

two subperiods (1993/1–2005/12 and 2006/1–2018/12). For each one of these three out-of-

sample periods, we assume the investor constructs a sample optimal portfolio using monthly

data from 1967/1 to the beginning of the out-of-sample period. The investor then holds this

sample optimal portfolio throughout the out-of-sample period. Out-of-sample Sharpe ratio

(OS-SR) of the asset pricing model is computed using the portfolio returns in the out-of-

sample period.5 For comparison, we also obtain the in-sample Sharpe ratio (IS-SR) of the

asset pricing model in the out-of-sample period. Table III reports the results for the three

out-of-sample periods. We compare the Sharpe ratios of a given model with that of the

CAPM, and report the significance in the table. The in-sample Sharpe ratio comparison is

based on the Gibbons-Ross-Shanken test, whereas the out-of-sample Sharpe ratio comparison

is based on a one-sided test using the asymptotic distribution.

Table III reveals that the out-of-sample Sharpe ratios of the multi-factor models are

inferior to their in-sample Sharpe ratios, often by a substantial amount. For example, for

the period 1993–2018, five multi-factor models have in-sample Sharpe ratios higher than the

CAPM at the 1% level and one model outperforms the CAPM at the 5% level. The only

model that does not have an in-sample Sharpe ratio significantly higher than that of the

CAPM is FF-3. When the out-of-sample Sharpe ratio is considered, the only model that

significantly outperforms the CAPM over 1993–2018 is HMXZ q5.6 Similar pattern can also

be seen in both 1993–2005 and 2006–2018, though the multi-factor models all perform better

in 1993–2005 than in 2006–2018 in terms of both in-sample and out-of-sample Sharpe ratios.

Across both out-of-sample subperiods, only the HMXZ q5 model can deliver a significantly

higher out-of-sample Sharpe ratio than that of the CAPM.

Table III about here

In Table IV, we conduct similar exercise as in Table II by comparing the Sharpe ratios

of mutual funds with those of the asset pricing models; but instead of in-sample Sharpe

5This empirical exercise is performed by Fama and French (2018, Table 3). However, instead of studying
the properties of the out-of-sample Sharpe ratio, Fama and French (2018) used this out-of-sample Sharpe
ratio to test whether competing models have equal population Sharpe ratio based on a bootstrap experiment.

6Given that there is no estimation risk involved when holding the market portfolio, the in-sample and
out-of-sample Sharpe ratios of the CAPM are identical.
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ratios, we use the out-of-sample Sharpe ratios of the asset pricing models for comparison

in Table IV. We find that a larger percentage of mutual funds can beat the multi-factor

asset pricing models in Table IV than in Table II. For example, 36.46% of mutual funds

have higher before-fee sample Sharpe ratio than the out-of-sample Sharpe ratio of FF-3 in

1993–2018, whereas only 17.60% of the funds can beat the in-sample Sharpe ratio of FF-3 in

the same period. The subperiod results (1993–2005 and 2006–2018) in Table IV suggest that

the outperformance of the mutual funds relative to the out-of-sample Sharpe ratios of the

multi-factor asset pricing models is more evident in the second subperiod 2006–2018. For

example, in 2006–2018, 93.24% of the mutual funds outperform FF-3. The only exception

is HMXZ q5, for which we continue to see a very small percentage (0.08%) of the funds that

can deliver a superior sample Sharpe ratio in the second subperiod.

Table IV about here

Our data analysis so far suggests that the out-of-sample Sharpe ratio of a multi-factor

model tends to be inferior to its in-sample Sharpe ratio. Taking into account estimation

errors, it is not entirely clear whether a multi-factor asset pricing model can deliver supe-

rior out-of-sample Sharpe ratio than the market portfolio (which has no estimation risk).

The only exception is the newest model considered, i.e., HMXZ q5, which presents robust

performance even after taking into account of estimation risk.

Given that investors do not know the mean and covariance matrix of the factors, they

ought to be more interested in the out-of-sample Sharpe ratio of an asset pricing model.

However, one should not draw definitive conclusion based on the results in Tables III and

IV because these are only point estimates, and they are subject to sampling fluctuations.

The out-of-sample performance can be sensitive to the length of the estimation window as

well as the choice of the out-of-sample period. To provide additional insights, we conduct

theoretical analysis of the distribution of both the in-sample and the out-of-sample Sharpe

ratio of a multi-factor asset pricing model in the rest of the paper.

II. Finite Sample Distribution of In-sample and Out-

of-sample Sharpe Ratios

We consider a multi-factor asset pricing model with N traded factors with N ≥ 2. Let rt be

the excess returns of the N traded factors at time t. The elements of rt can be returns of
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risky assets in excess of risk-free rate, or they can be return differences of two risky assets.

The mean and covariance matrix of rt are defined as µ = E[rt] and Σ = Var[rt], respectively.

We assume µ is a nonzero vector and Σ is positive definite. For a mean-variance investor

who wants to hold a portfolio with a target standard deviation of σ, it is easy to show that

his optimal portfolio has weights of

w∗ =
σ

θ
Σ−1µ

in the N traded factors, where θ =
√
µ′Σ−1µ is the maximum Sharpe ratio that one can

obtain from the N factors. Obviously, the Sharpe ratio of the optimal portfolio is

w∗′µ√
w∗′Σw∗

=
µ′Σ−1µ√
µ′Σ−1µ

=
√
µ′Σ−1µ = θ. (1)

When the investor does not know the mean and covariance matrix of the factors, he has to

estimate θ using historical data. Suppose he has data on rt for t = 1, . . . , T . The sample

estimator of θ is

θ̂ =

√
µ̂′Σ̂−1µ̂, (2)

where µ̂ and Σ̂ are the sample estimators of µ and Σ, and they are given by

µ̂ =
1

T

T∑
t=1

rt, (3)

Σ̂ =
1

T

T∑
t=1

(rt − µ̂)(rt − µ̂)′. (4)

We call θ̂ the in-sample Sharpe ratio of the factors (or asset pricing model), which is an ex

post measure of performance and it is unattainable by investors.

For an investor who does not know µ and Σ, he needs to estimate the weights of the

optimal portfolio, and therefore, θ is also unattainable out-of-sample. A natural estimator

of w∗ is

ŵ =
σ

θ̂
Σ̂−1µ̂. (5)

The out-of-sample mean and variance of this estimated optimal portfolio are

ŵ′µ =
σ

θ̂
µ̂′Σ̂−1µ, (6)

ŵ′Σŵ =
σ2

θ̂2
µ̂′Σ̂−1ΣΣ̂−1µ̂. (7)
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The out-of-sample Sharpe ratio of the estimated optimal portfolio is then given by

θ̃ =
ŵ′µ√
ŵ′Σŵ

=
µ̂′Σ̂−1µ

(µ̂′Σ̂−1ΣΣ̂−1µ̂)
1
2

. (8)

We call θ̃ the out-of-sample Sharpe ratio of the factors (or asset pricing model). Unlike θ̂

or θ, θ̃ is what an investor can actually obtain out-of-sample by holding the sample optimal

portfolio ŵ.

Note that both θ̂ and θ̃ are random variables because they depend on the realizations of

µ̂ and Σ̂. Our first task is to obtain the finite sample joint distribution of (θ̂, θ̃). For this

purpose, we assume rt is identically and independently distributed (i.i.d.) as a multivariate

normal distribution with mean µ and covariance Σ. Under this assumption, the following

proposition provides a great simplification of this problem by providing a stochastic repre-

sentation of (θ̂, θ̃) that only depends on four univariate random variables (instead of µ̂ and

Σ̂).

Proposition 1: Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. Let u1 ∼ χ2

T−N , b ∼ Beta((T −
N + 1)/2, (N − 1)/2), and they are independent of each other. Conditional on b, let z̃ ∼
N (
√
b
√
Tθ, 1) and ũ ∼ χ2

N−1((1 − b)Tθ2), and they are independent of each other and u1,

where χ2
ν(δ) stands for a noncentral chi-squared random variable with ν degrees of freedom

and a noncentrality parameter of δ. We have

θ̂
d
=

√
z̃2 + ũ
√
u1

, (9)

θ̃
d
=

θz̃√
z̃2 + ũ

. (10)

Besides providing a great simplification of the problem, Proposition 1 also reveals that the

joint distribution of (θ̂, θ̃) depends only on N , T , and θ. Once θ is known, we do not need

to know the individual elements of µ and Σ to obtain the joint distribution of (θ̂, θ̃). For

asset pricing models with different µ and Σ (but same N), their joint distributions of (θ̂, θ̃)

are the same as long as they have the same θ.

With the stochastic representation of (θ̂, θ̃) in Proposition 1, we can easily obtain the

exact moments and joint moments of θ̂ and θ̃. The following Lemma presents some low

order moments of θ̂ and θ̃.
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Lemma 1. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. We have

E[θ̂] =
Γ
(
N+1
2

)
Γ
(
T−N−1

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−1

2
;
N

2
;−Tθ

2

2

)
for T ≥ N + 2, (11)

E[θ̃] =
θ2
√
TΓ
(
N+1
2

)
Γ
(
T−N+2

2

)
Γ
(
T
2

)
√

2Γ
(
N+2
2

)
Γ
(
T−N+1

2

)
Γ
(
T+1
2

) 1F1

(
1

2
;
N + 2

2
;−Tθ

2

2

)
for T ≥ N + 1, (12)

E[θ̂2] =
Tθ2 +N

T −N − 2
for T ≥ N + 3, (13)

E[θ̃2] = θ2
[
T −N + 1

T
− (N − 1)(T −N)

NT
1F1

(
1;
N + 2

2
;−Tθ

2

2

)]
for T ≥ N + 1, (14)

E[θ̂θ̃] =
θ2
√
T (T −N)Γ

(
T
2

)
√

2(T −N − 1)Γ
(
T+1
2

) for T ≥ N + 2, (15)

where Γ(a) is the gamma function and 1F1(a; b;x) is the confluent hypergeometric function.

With the above expressions, we can then compute Var[θ̂], Var[θ̃], and Cov[θ̂, θ̃]. These results

allow us to prove some important inequalities on E[θ̂], E[θ̃] and Cov[θ̂, θ̃], which are given in

the following lemma.

Lemma 2. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. We have

E[θ̃] < θ < E[θ̂], (16)

Cov[θ̂, θ̃] > 0. (17)

The inequality E[θ̃] < θ is not surprising. Since ŵ is estimated with errors, we expect the out-

of-sample Sharpe ratio of ŵ is not as good as the Sharpe ratio of the true optimal portfolio.

In fact, the inequality can be strengthened to θ̃ < θ because unless ŵ is proportional to w∗

(and this event has probability zero), we must have θ̃ < θ. The inequality θ < E[θ̂] is also

not surprising because the in-sample Sharpe ratio is computed after µ̂ and Σ̂ are observed,

and this look-ahead bias on average allows the sample optimal portfolio to have a better

in-sample performance than the population Sharpe ratio. In Figure 1, we plot E[θ̃]/E[θ̂] as

a function of T for various values of N (3 and 6) and θ (0.2 and 0.4). It can be seen that

estimation errors significantly drive down the out-of-sample performance of a multi-factor

asset pricing model. When N = 6 and θ = 0.2, E[θ̃] is only 22% of E[θ̂] when T = 50. The

ratio E[θ̃]/E[θ̂] is increasing in T but even with T = 300, it is still only 0.6777. Therefore,

in-sample Sharpe ratio does not give a reliable prediction of what an investor can expect

12



to obtain in out-of-sample. For higher θ and smaller N , the signal-to-noise ratio is higher

and hence E[θ̃]/E[θ̂] is higher, but the loss due to estimation risk is still quite significant,

especially when the length of time series is short.

Figure 1 about here

The result that θ̂ and θ̃ are positively correlated is somewhat surprising. Given that

returns are i.i.d., we do not expect measure of past performance (θ̂) to predict future per-

formance (θ̃). The reason that θ̂ and θ̃ are positively correlated is because both θ̂ and θ̃ are

functions of ŵ. In Figure 2, we present the correlation between θ̂ and θ̃, ρ(θ̂, θ̃), as a function

of T for various values of N (3 and 6) and θ (0.2 and 0.4). Figure 2 shows that for all

cases considered, there is non-trivial positive correlation between θ̂ and θ̃. The correlation is

higher for smaller θ. For some cases, the correlation can be as high as 0.333. As T increases,

the correlation decreases gradually.

Figure 2 about here

Using the results of Proposition 1, we can obtain explicit expressions of the marginal

distributions of θ̂ and θ̃ as well as the joint distribution of (θ̂, θ̃). For the marginal distribution

of θ̂, we can write θ̂
d
=
√
u3/
√
u1, where u3 = z̃2+ũ ∼ χ2

N(Tθ2). This implies that θ̂2
d
= u3/u1

is proportional to a noncentral F -distribution with degrees of freedom N and T − N and

a noncentrality parameter Tθ2, a well known result in the literature (see Gibbons, Ross,

and Shanken (1989) and Kan and Robotti (2016)). Let F δ
m,n(y) stand for the cumulative

distribution function of a noncentral F random variable with m and n degrees of freedom

and a noncentrality parameter δ. The distribution and density functions of θ̂ are given by

P[θ̂ < c] = P[θ̂2 < c2] = F Tθ2

N,T−N

(
(T −N)c2

N

)
, (18)

fθ̂(c) =
2cN−1e−

Tθ2

2

(1 + c2)
T
2 B
(
N
2
, T−N

2

)1F1

(
T

2
;
N

2
;
Tθ2c2

2(1 + c2)

)
, (19)

where B(a, b) is the beta function. In Figure 3, we plot the density function of θ̂/θ for two

different values of N (3 and 6) and θ (0.2 and 0.4) with T = 120. It can be seen that θ̂ is

quite volatile when T = 120. In addition, as suggested by Lemma 2, θ̂ is an upward biased

estimator of θ. The relative bias of θ̂ increases with N and decreases with θ. Therefore, we

13



can expect an asset pricing model with more factors to have a higher in-sample Sharpe ratio

on average, even though the population Sharpe ratio may not improve from having more

factors.

Figure 3 about here

For the marginal distribution of θ̃, we use Proposition 1 and define q = z̃/
√
ũ to obtain

θ̃
d
=

θz̃√
z̃2 + ũ

=
θq√

1 + q2
. (20)

Expression (20) suggests that θ̃ is a monotonic increasing function of q. It also reveals that

−θ ≤ θ̃ ≤ θ, so θ̃ has a bounded support. Conditional on b, q is proportional to a doubly

noncentral t-distribution, so we can compute the cumulative distribution function of θ̃ using

P[θ̃ < c] = P

q < c
θ√

1− c2

θ2


= P

[
z̃ <

c
√
ũ√

θ2 − c2

]

=

∫ 1

0

∫ ∞
0

Φ

(
c
√
u√

θ2 − c2
−
√
b
√
Tθ

)
fũ(u)fb(b)dudb for −θ < c < θ, (21)

where Φ(·) is the cumulative distribution function of a standard normal, fũ(u) is the density

function of χ2
N−1((1− b)Tθ2), and fb(b) is the density function of Beta((T −N + 1)/2, (N −

1)/2). Taking derivative yields the density function of θ̃ as follows

fθ̃(c) =
θ2

(θ2 − c2) 3
2

∫ 1

0

∫ ∞
0

φ

(
c
√
u√

θ2 − c2
−
√
b
√
Tθ

)√
ufũ(u)fb(b)dudb for −θ < c < θ,

(22)

where φ(·) is the density function of a standard normal.

In Figure 4, we plot the density function of θ̃/θ for two different values of N (3 and 6)

and θ (0.2 and 0.4) with T = 120.7 It can be seen that θ̃ is quite volatile when T = 120,

especially when N is large and θ is small. For those cases, we can expect a substantial

deterioration in the out-of-sample performance when an investor holds the sample optimal

7It can be shown that when N > 3, limc→θ− fθ̃(c) = 0 and limc→(−θ)+ fθ̃(c) = 0. When N = 3, these two
limits are finite, and when N = 2, these two limits are infinity. Proof of these results as well as the explicit
expressions of of the two limits for the case of N = 3 are available upon request.
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portfolio. For example, when N = 6 and θ = 0.2, we have P[θ̃/θ < 0.8] = 0.7027, so there

is more than 70% probability that an investor will lose more than 20% of the Sharpe ratio

due to estimation risk. However, if θ = 0.4, then this probability drops down to 19%.

Figure 4 about here

We now turn our attention to the joint distribution of (θ̂, θ̃). As it turns out, the joint

cumulative distribution of (θ̂, θ̃) can be written as a triple integral, whereas the joint density

of (θ̂, θ̃) can be written as a double integral. These expressions are summarized in the

following Proposition.

Proposition 2: Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. When c1 ≥ 0 and 0 < c2 ≤ θ, we have

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞
0

∫ 1

0

∫ c21v

0

[
Φ

(
min

[
c2
√
u√

θ2 − c22
,
√
c21v − u

]
−
√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv, (23)

where fũ(u) is the density function of χ2
N−1((1 − b)Tθ2), fb(b) is the density function of

Beta((T −N + 1)/2, (N − 1)/2), and fu1(v) is the density function of χ2
T−N . When c1 ≥ 0

and −θ ≤ c2 ≤ 0, we have

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞
0

∫ 1

0

∫ c21(θ
2−c22)v
θ2

0

[
Φ

(
c2
√
u√

θ2 − c22
−
√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv. (24)

The joint density of (θ̂, θ̃) is given by8

fθ̂,θ̃(c1, c2) =

∫ 1

0

∫ ∞
0

fũ

(
c21(θ

2 − c22)v
θ2

)
φ

(
c1c2
√
v

θ
−
√
Tθ
√
b

)
2c21v

3
2

θ
fu1(v)fb(b)dvdb (25)

for c1 > 0 and −θ < c2 < θ.

8When N is even, the inner integrals of fθ̃(c) and fθ̂,θ̃(c1, c2) can be solved analytically, so fθ̃(c) and

fθ̂,θ̃(c1, c2) can be evaluated using a single rather than a double integral. These results are available upon
request.

15



In Figure 5, we plot the joint density of (θ̂/θ, θ̃/θ) for two different values of N (3 and

6) and θ (0.2 and 0.4) with T = 120. It can be seen that there is quite a bit of volatility in

both θ̂ and θ̃, especially when N is large and θ is small. Comparing the graphs of N = 3

with N = 6, we see that the joint density is an increasing function of θ̃ when N = 3, and

it reaches the maximum when θ̃/θ = 1. However, for N = 6, the joint density reaches an

interior maximum at θ̃/θ < 1. This is consistent with the result in Figure 4, where we also

see the marginal density of θ̃ is an increasing function of θ̃ when N = 3 but has an interior

maximum when N = 6.

Figure 5 about here

While it is interesting to obtain the unconditional distribution of the out-of-sample Sharpe

ratio of an asset pricing model, it is equally important for us to understand the distribution

of the out-of-sample Sharpe ratio of an asset pricing model conditional on its observed in-

sample Sharpe ratio. Given that θ̃ is not independent of θ̂, the conditional distribution of

θ̃ provides better information for an investor to decide whether to hold a sample optimal

portfolio implied by a given asset pricing model. With the expression of the joint density of

(θ̂, θ̃) and the marginal density of θ̂, we can compute the density of θ̃ conditional on θ̂ using

fθ̃|θ̂(c2|c1) =
fθ̂,θ̃(c1, c2)

fθ̂(c1)
. (26)

The conditional distribution of θ̃ when θ̂ = c1 can be obtained by integrating the conditional

density above. In Figure 6, we plot the conditional density of θ̃/θ for two different values of

N (3 and 6) and θ (0.2 and 0.4) with T = 120. The plot shows the conditional density of

θ̃/θ when conditional on three different values of θ̂, the first one is at the 10th percentile of

θ̂ (solid line), the second one is at the 50th percentile of θ̂ (dotted line), and the last one is

at the 90th percentile of θ̂ (dashed line). It can be seen that the conditional density of θ̃ can

be quite sensitive to the value of θ̂. In particular, the distribution of θ̃ when conditional on a

high value of θ̂ tends to dominate the distribution of θ̃ when conditional on a low value of θ̂.

This is consistent with the result in Lemma 2, in which we show that θ̂ and θ̃ are positively

correlated.

Figure 6 about here

The conditional moments of θ̃ can also be derived. In the following lemma, we present

explicit expressions for the first two moments of θ̃ when conditional on a given value of θ̂.
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Lemma 3. Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. We have

E[θ̃|θ̂] =
2θ
√
y

N

Γ
(
T−N+2

2

)
1F1

(
T+1
2

; N+2
2

; y
)

Γ
(
T−N+1

2

)
1F1

(
T
2
; N

2
; y
) , (27)

E[θ̃2|θ̂] = θ2

[
T −N + 1

T
− (N − 1)(T −N)

NT

1F1

(
T
2
; N+2

2
; y
)

1F1

(
T
2
; N

2
; y
) ] (28)

for T ≥ N + 1, where y = Tθ2θ̂2/[2(1 + θ̂2)].

In Figure 7, we plot E[θ̃|θ̂]/θ as a function of θ̂/θ for two different values of N (3 and 6) and θ

(0.2 and 0.4) with T = 120. As expected, E[θ̃|θ̂]/θ is a monotonic increasing function of θ̂/θ.

It suggests that keeping N and θ constant, one would prefer an asset pricing model that has

a higher in-sample Sharpe ratio. The sample optimal portfolio from such a model tends to

also have a higher expected out-of-sample Sharpe ratio. However, Figure 7 also reveals that

the relation between E[θ̃|θ̂]/θ and θ̂/θ also depends on N and θ. When N is small and θ is

large, E[θ̃|θ̂]/θ is big but it does not vary much with θ̂. In contrast, when N is large and θ is

small, the magnitude of E[θ̃|θ̂]/θ is small, but one can expect the out-of-sample performance

of an asset pricing model to be greatly dependent on its past in-sample performance.

Figure 7 about here

III. Asymptotic Distributions of In-sample and Out-

of-sample Sharpe Ratios

Although we provide the exact distribution of (θ̂, θ̃) in Section II, researchers may opt to

use the asymptotic distribution of (θ̂, θ̃) instead. This is because asymptotic distribution

is often simpler to use than finite sample distribution. This advantage will be particularly

appealing when the approximation error of the asymptotic distribution is small. In this

section, we present the limiting distribution of (θ̂, θ̃) and evaluate the accuracy of the limiting

distribution using the finite sample results from Section II. As it turns out, there are two

different limiting distributions for (θ̂, θ̃) depending on whether N is fixed or N → ∞ as

T →∞.

Our first limiting result is based on the traditional asymptotic analysis, which assumes N

is fixed when T →∞. The following Proposition presents the limiting distribution of (θ̂, θ̃)

under this assumption.
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Proposition 3: Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. When N is fixed and T →∞, we have[ √

T (θ̂ − θ)
T (θ̃ − θ)

]
d→
[
X
Y

]
, (29)

where X ∼ N
(

0, 1 + θ2

2

)
, Y ∼ −(1+θ2)/(2θ)χ2

N−1, and they are independent of each other.

The limiting distribution of
√
T (θ̂−θ) is well known and it is easy to derive (see, for example,

Barillas, Kan, Robotti, and Shanken (2019)). Interestingly, the asymptotic distribution of θ̂

is the same as the one for the single asset case as discussed in Lo (2002). This suggests that

using ŵ instead of w∗ has no impact on the asymptotic distribution of θ̂, so estimation errors

of ŵ has only a second order impact on the asymptotic distribution of θ̂.

The result of the limiting distribution of T (θ̃ − θ) is new. There are two points to note

here. First, unlike θ̂ which converges to θ at a rate of 1/
√
T , θ̃ converges to θ at a rate of 1/T .

Second, the limiting distribution of T (θ̃− θ) is not a normal distribution, but instead it is a

negative random variable which is proportional to χ2
N−1. This is because while θ̃ converges

to θ, it is always less than θ in a finite sample, so the limiting distribution of T (θ̃ − θ) has

to be a negative random variable.

Instead of the traditional asymptotic analysis which assumes fixed N , the following

Proposition presents the limiting distribution assuming both N and T converge to infin-

ity, but N/T → ρ ∈ (0, 1).

Proposition 4: Suppose rt
i.i.d.∼ N (µ,Σ) and N ≥ 2. When N →∞, T →∞, N/T → ρ ∈

(0, 1) and θ is fixed, we have[ √
T (θ̂ − θ̄)√
T (θ̃ − θ)

]
d→ N

02,

 θ4+2θ2+ρ
2(1−ρ)2(θ2+ρ)

ρθ2

2(θ2+ρ)2

ρθ2

2(θ2+ρ)2
ρθ2

2(θ2+ρ)

[
(1−ρ)(2ρ+θ2)

(θ2+ρ)2
+ 2 + θ2

]  , (30)

where

θ̄ =

√
θ2 + ρ√
1− ρ

, (31)

θ =
θ2
√

1− ρ√
θ2 + ρ

. (32)

It can be readily shown that θ̄ > θ and θ < θ. The result that θ̂
p→ θ̄ under the assumption

that N/T → ρ can be easily obtained from Theorem 4.6 of El Karoui (2010). The result
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that θ̃
p→ θ when N/T → ρ was shown in Ao, Li, and Zheng (2019). However, the limiting

distribution of (θ̂, θ̃) under the assumption that N/T → ρ is not easy to obtain and it is

unavailable in the literature. We are able to obtain the limiting distribution in Proposition 4

because we have derived the exact distribution of (θ̂, θ̃) in Proposition 1, and this allows us

to obtain the limiting distribution of (θ̂, θ̃) by taking the appropriate limit.

The bivariate normality result in Proposition 4 also allows us to obtain an approximation

of the conditional distribution of θ̃ when conditional on θ̂. In particular, we can approximate

the conditional distribution of θ̃ by using a normal distribution with conditional mean

E[(θ̃ − θ)|θ̂] ≈ ρ(1− ρ)2θ2

(θ2 + ρ)(θ4 + 2θ2 + ρ)
(θ̂ − θ̄)

⇒ E[θ̃|θ̂] ≈
√

1− ρθ2(θ4 + 2θ2 + ρ2)√
θ2 + ρ(θ4 + 2θ2 + ρ)

+
ρ(1− ρ)2θ2

(θ2 + ρ)(θ4 + 2θ2 + ρ)
θ̂. (33)

In addition, the conditional variance of θ̃ can be approximated by using

Var[θ̃|θ̂] ≈ ρθ2(1 + θ2)2(2 + θ2)

2T (θ2 + ρ)(θ4 + 2θ2 + ρ)
, (34)

which is independent of θ̂.

With the exact distribution result in Section II, we can evaluate the accuracy of the

two different asymptotic distributions of θ̂ and θ̃. In Figure 8, we plot the exact density of

θ̂/θ (solid line) vs. its two approximations, one is based on the fixed N asymptotic (dashed

line) and the other is based on the N/T → ρ asymptotic (dotted line). We consider two

different values of N (3 and 6) and θ (0.2 and 0.4) with T = 120. It can be seen that the

approximate distribution based on the traditional fixed N asymptotic does not perform well

in all cases. This is because θ̂ has a bias, which the fixed N asymptotic distribution of θ̂

ignores. In contrast, the approximation based on the fixed N/T asymptotic works very well

in all cases in approximating the exact distribution of θ̂. Therefore, if one would like to use

an asymptotic distribution to approximate the exact distribution of θ̂, there is a compelling

reason to use the fixed N/T asymptotic one, even when N is small and T is large.

Figure 8 about here

We now turn our attention to the density of θ̃. In Figure 9, we plot the exact density of

θ̃/θ (solid line) vs. its two approximations, one is based on the fixed N asymptotic (dashed
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line) and the other is based on the N/T → ρ asymptotic (dotted line). We consider two

different values of N (3 and 6) and θ (0.2 and 0.4) with T = 120. It can be seen that

when N = 3, the fixed N asymptotic approximation works very well, especially when θ =

0.4. In contrast, the fixed N/T asymptotic approximation of θ̃, which assumes it has a

limiting normal distribution, does a poor job in approximating the exact distribution of θ̃.

When N = 6, the fixed N asymptotic approximation starts to deviate significantly from

the exact distribution of θ̃, especially for the case with θ = 0.2. The fixed N/T asymptotic

approximation improves with an increase in N , but it still deviates quite a bit from the exact

distribution for N = 6. Therefore, unless N is very small, both asymptotic approximations

do not provide reliable approximations of the exact distribution of θ̃, and one is better off

using the exact distribution of θ̃ to draw inference.9

Figure 9 about here

With the expressions of conditional mean and conditional variance of θ̃ in (33) and (34)

and Proposition 4, we are also able to obtain the limiting distribution of θ̃ conditional on θ̂,

which is a normal distribution.10 As shown in Figure 6, the conditional density based on the

finite sample results clearly deviates from normality. Therefore, the asymptotic conditional

distribution of θ̃ also does not provide an accurate approximation of the exact conditional

distribution of θ̃ in finite samples.

IV. Making Inference of Out-of-Sample Sharpe Ratio

We now proceed to answer the following question. Given an asset pricing model and some

historical data on its factor returns, how should an investor forecast the distribution of the

out-of-sample Sharpe ratio of the sample optimal portfolio in the following period. Given

that the asymptotic distributions of θ̃ do not provide accurate approximation in the finite

sample as shown in Section III, we focus on making inference using our finite sample results

on in-sample and out-of-sample Sharpe ratio. Based on the frequentist approach, we present

a procedure to construct the confidence interval of the distribution of the out-of-sample

9When N is larger, like N ≥ 10, we find that the fixed N/T asymptotic approximation works remarkably
well in approximating the exact distribution of θ̃.

10In the case that N is fixed and T →∞, the limiting distribution of θ̂ and θ̃ are independent of each other.
Therefore, the limiting conditional distribution of θ̃ is the same as the unconditional one in Proposition 3.
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Sharpe ratio. In addition, we also show how to obtain the posterior predictive distribution

of the out-of-sample Sharpe ratio using a Bayesian approach.

A. Confidence Interval of the Distribution of Out-of-Sample Sharpe
Ratio

In Section II, we already derive the finite sample distribution of θ̃ conditional on θ̂ in (26).

This distribution, however, depends on the population Sharpe ratio, which is unknown to

investors. Thus, we first consider the problem of constructing a confidence interval for the

population Sharpe ratio of an asset pricing model. This problem is well studied in the

literature. Under the assumption that rt
i.i.d.∼ N (µ,Σ), we know

(T −N)θ̂2

N
∼ FTθ2N,T−N , (35)

where FTθ2N,T−N is a noncentral F -distribution with N and T − N degrees of freedom, and

a noncentrality parameter of Tθ2. Since the noncentral F -distribution is decreasing in its

noncentrality parameter, we can use the statistical method (see, for example, Casella and

Berger (1990, Section 9.2.3)) to construct a 100(1 − α)% confidence interval for θ. Using

this methodology, we first plot the 100(α/2) and 100(1−α/2) percentiles of the distribution

of θ̂2 for different values of θ. We then draw a horizontal line at the observed value of

θ̂2. This horizontal line will first intersect the 100(1 − α/2) percentile line and then the

100(α/2) percentile line of θ̂2. The interval between these two intersection points gives us a

100(1− α)% confidence interval for θ. Mathematically, θL and θU are implicitly determined

by the following two equations

F
Tθ2L
N,T−N(x) = 1− α

2
, (36)

F
Tθ2U
N,T−N(x) =

α

2
, (37)

where x = (T − N)θ̂2/N . Note that since F δ
N,T−N(x) is decreasing in the noncentrality

parameter δ, (36) will not have a solution for θL when F 0
N,T−N(x) < 1 − α/2. In this case,

we set θL = 0. Similarly, if F 0
N,T−N(x) < α/2, we cannot find a solution for θU in (37) and

we set θU = 0.

While we can obtain a confidence interval for θ, this information would be of little interest

to an investor except for the case of a single factor model (like the CAPM). For multi-factor

models, investors do not know the true optimal portfolio implied by the model, and hence
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the population Sharpe ratio is not directly relevant. Instead, investors are more interested

in what they will receive out-of-sample from holding the sample optimal portfolio suggested

by the asset pricing model. Therefore, we would like to make inference on the distribution

of the out-of-sample Sharpe ratio of an asset pricing model.

With the confidence interval for θ, we are able to construct the confidence interval of

the exact distribution of θ̃ conditional on θ̂ using (26). Specifically, we can first use θL to

compute the conditional distribution of θ̃ and then use θU to compute another conditional

distribution of θ̃. This gives us a method for constructing a confidence interval for any

percentile of the conditional distribution of θ̃. We could also use this method to construct a

confidence interval for E[θ̃|θ̂].

In Table V, we consider an investor standing at the end of 2018. For three different

estimation windows, h = 60, 120, and 240 months, we report θ̂ for the eight different asset

pricing models. For each model, we report a 95% confidence interval for its θ, i.e., (θL, θU).

It can be seen that there is a lot of uncertainty about θ. Even with h = 240 months, quite

a few models have θL = 0 (e.g., CAPM, FF-3, and Carhart-4). For h = 240 months, HMXZ

q5 has the highest in-sample Sharpe ratio of 0.469 but the 95% confidence interval for its θ

is (0.308, 0.501), which is quite wide. Although the 95% confidence interval for θ of HMXZ

q5 dominates the 95% confidence interval for θ of the CAPM, which is (0, 0.229), this does

not mean an investor ought to invest in the factors of the HMXZ q5 model. This is because

the population Sharpe ratio is unattainable to an investor who does not know the true mean

and covariance matrix of the factors.

Table V about here

We now turn our attention to constructing confidence intervals for the 10th, 50th, and

90th percentiles of the conditional distribution of θ̃ (when conditional on θ̂) for the multi-

factor models. Just like the confidence interval for θ, the confidence intervals for different

percentiles of the conditional distribution of θ̃ are also quite wide, even if the length of

estimation window is 240 months. When h = 240 months, the 95% confidence intervals for

the median of θ̃ of most mulit-factor models overlap with the confidence interval for θ of the

CAPM. For example, the 95% confidence interval for the median of θ̃ for the FF-5, HXZ q,

and BS-6 models are (0.135, 0.408), (0.088, 0.362), and (0.074, 0.356), respectively, and it is

not entirely clear that it dominates the CAPM, which has a 95% confidence interval of (0,
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0.229) for θ. The only exception is the HMXZ q5 model, which has a 95% confidence interval

of (0.291, 0.562) for the median of θ̃.11

An advantage of holding the value-weighted market portfolio is that we know we will get

its population Sharpe ratio in out-of-sample. This is not the case for multi-factor models

because due to estimation risk, its out-of-sample Sharpe ratio has a distribution. In addi-

tion, the uncertainty of the percentiles of the conditional distribution of θ̃ also presents an

additional source of risk to an investor. Taken as a whole, we do not find strong evidence

that the recent multi-factor models can deliver superior out-of-sample performance than the

value-weighted market portfolio, with the exception of the most recent HMXZ q5 model.

B. Bayesian Approach

We next illustrate how to make inference of θ̃ under the Bayesian approach by specifying

a prior on θ. There are many possible choices for the prior distribution of θ. We consider

a prior on θ that has a bounded support, say 0 ≤ θ ≤ c, because it is unlikely that θ of

any asset pricing model can go to infinity. Specifically, we set the upper bound for the θ

to c = 0.6, which is about four to five times the in-sample Sharpe ratio of the CAPM that

we observe in our sample period, and it is about the level of the highest in-sample Sharpe

ratio for the asset pricing models that we consider. The conventional wisdom in finance is

that high Sharpe ratios are good deals and they are unlikely to survive, and a Sharpe ratio

that is twice that of the market portfolio is already considered very high (e.g., Ross (1976),

MacKinlay (1995), Cochrane and Saá-Requejo (2000)). Nevertheless, we would like to give

the benefit of doubt to the multi-factor asset pricing models by allowing them to have a

potentially much higher Sharpe ratio than that of the market portfolio.

A simple prior distribution for θ is the beta distribution. Specifically, we assume that

θ ∼ cBeta(α, β), (38)

where α and β are parameters to be specified. The mean of the prior distribution of θ is

given by

E[θ] =
αc

α + β
. (39)

11In untabulated results, we also obtain the 95% confidence interval for the unconditional distribution of
θ̃. As expected, the unconditional distribution of θ̃ is more volatile than the conditional distribution of θ̃,
and the 95% confidence intervals for the 10th, 50th, and 90th percentiles of the unconditional θ̃ are wider
than those for the conditional θ̃.

23



If we assume the prior for the CAPM has a mean of 0.15, then we need α/(α + β) = 1/4,

which can be accomplished by setting α = 2 and β = 6. With these parameter values, the

prior distribution of θ is right skewed and has a mode at 1/6. For an asset pricing model

with more factors, we may choose a lower β so that the mean of the prior distribution of θ

is higher.

Given the prior distribution of θ and the in-sample Sharpe ratio (θ̂), we can then obtain

the posterior predictive distribution of θ̃. The posterior predictive density of θ̃ can be

computed using

f(θ̃|θ̂) =

∫ c

0

f(θ̃|θ, θ̂)f(θ|θ̂)dθ =

∫∞
0
f(θ̃|θ, θ̂)f(θ, θ̂)dθ

f(θ̂)
=

∫ c
0
f(θ̃, θ̂|θ)f(θ)dθ∫ c
0
f(θ̂|θ)f(θ)dθ

(40)

for −c < θ̃ < c, and the k-th moment of the posterior predictive distribution of θ̃ is given by

E[θ̃k|θ̂] =

∫ c

−c
θ̃kf(θ̃|θ̂)dθ̃. (41)

Following the proof of Lemma 3, it can be readily shown that the first two moments can be

expressed as single integrals.

In Table VI, we consider an investor standing at the end of 2018 and apply our results to

compute the posterior predictive distribution of θ̃. For three different estimation windows,

h = 60, 120, and 240 months, we first compute the in-sample Sharpe ratio (θ̂) for the

eight asset pricing models. Given the prior distribution of θ, we then obtain the posterior

predictive mean and standard deviation of θ̃. For the prior distribution of θ, we set α = 2

and consider three different values of β (6, 4, and 2).

Table VI about here

At the end of 2018, all the multi-factor models have a higher in-sample Sharpe ratio

than that of the CAPM, regardless of the length of estimation window. For example, when

h = 60 months, the CAPM has θ̂ = 0.201, whereas some of the multi-factor models have

much higher θ̂ (e.g., 0.555 for BAB and 0.567 for HMXZ q5). However, a Bayesian investor

will incorporate his prior when deciding whether to invest in the sample optimal portfolio

associated with an asset pricing model. In general, the posterior mean of θ will be some

weighted average of prior mean of θ and θ̂. For example, if investor has a prior of θ with

β = 6 (which implies a prior mean of 0.15 for θ), then the posterior mean of θ for the
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CAPM (which is also its θ̃) will only be 0.159, and it is less than its θ̂ of 0.201. For multi-

factor models, the Bayesian investor will also need to incorporate the uncertainty due to the

estimation risk associated with investing in the sample optimal portfolio. For example, even

with the impressive θ̂ of 0.555 for BAB and 0.567 for HMXZ q5, the posterior predictive mean

of θ̃ for these two models are only 0.253 and 0.160, respectively. In addition, the posterior

predictive standard deviation of θ̃ for these two models are quite a bit higher (0.094 for BAB

and 0.099 for HMXZ q5) than that of the CAPM. For all the other multi-factor models,

they show a lower posterior predictive mean of θ̃ than that for the CAPM. For priors with

β = 4 and 2, the corresponding prior mean for θ are 0.2 and 0.3, respectively. For investors

who hold a strong belief that the multi-factor models have very high Sharpe ratios, then

the posterior predictive mean of θ̃ will tend to be higher. However, even with β = 2, the

posterior predictive mean of θ̃ for BAB and HMXZ q5 are still only 0.396 and 0.308, which

is far lower than their in-sample Sharpe ratios of 0.555 and 0.567. For all the other asset

pricing models, their posterior predictive mean of θ̃ are not higher than that of the CAPM.

With a longer estimation window, the estimation risk associated with θ̃ is reduced. How-

ever, even for h = 120 and 240 months, the estimation risk is still quite substantial, and the

posterior predictive mean of θ̃ for the multi-factor models are still quite a bit lower than their

θ̂. For example, when h = 120 months and with β = 6, we still see only BAB and HMXZ

q5 to have a higher posterior predictive mean of θ̃ than that of the CAPM. Finally, with

h = 240 months, we now see more mulit-factor pricing models delivering a higher posterior

predictive mean of θ̃ than that of the CAPM, but they come with a higher posterior predic-

tive standard deviation. Nevertheless, FF-3 and Carhart-4 continue to have a lower posterior

predictive mean of θ̃ than that of the CAPM even with h = 240 months. In summary, for

a Bayesian investor, he should not be simply investing in the multi-factor model with the

highest θ̂. When it comes to selecting models, he needs to incorporate his prior on θ and to

take into account the estimation risk associated with the in-sample optimal portfolio. In our

empirical example, we find that even though many of the popular multi-factor models have

higher in-sample Sharpe ratio than that of the CAPM at the end of the sample period, a

Bayesian investor does not always favor these models over the CAPM. The decision crucially

depends on his prior as well as the length of estimation window.
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V. Conclusion

Academic asset pricing models have produced increasingly large sample Sharpe ratios over

time. Starting with the value-weighted market portfolio of the CAPM, which only produced

a sample Sharpe ratio of 0.117, we now have multi-factor model that produced sample

Sharpe ratio of 0.634, more than five times larger than that of the market portfolio. At

the same time, we do not see any real world investor who can generate Sharpe ratio that is

anywhere close to what is suggested by these popular asset pricing models. This presents a

serious problem because these multi-factor models are often used as benchmarks to evaluate

the performance of mutual fund managers, or to determine the cost of capital for capital

budgeting.

The high sample Sharpe ratios of the popular multi-factor asset pricing models are also

at odd with a long-standing belief in finance that high Sharpe ratios are good deals and they

are unlikely to survive. For example, Ross (1976) assumed that no portfolio can have Sharpe

ratio that is twice as large as that of the market portfolio. MacKinlay (1995) considered

Fama-French 3-factor model has unreasonably high sample Sharpe ratio, even after taking

into account of sampling variability. Cochrane and Saá-Requejo (2000) assumed that no

asset should have a Sharpe ratio that is twice that of the S&P500 (which they assumed to

have an annual value of 0.5, or a monthly value of 0.1443) and use this assumption to derive

bounds on option prices.

While there are a number of possible reasons of why the recent asset pricing models

produce high sample Sharpe ratios that seem unattainable by real world investors, our paper

focuses on one possible explanation, i.e., estimation risk. For multi-factor models, investors

need to know how to optimally allocate the weights into the various factors of the model.

When the mean and covariance matrix of the factors are not known, investor will not be able

to hold the true optimal portfolio. Instead, investors need to estimate the optimal weights

and this will lead to deteriorated out-of-sample performance for the sample optimal portfolio

as compared with the true optimal portfolio.

In this paper, we provide an analysis of the finite sample joint distribution of the in-sample

and out-of-sample Sharpe ratios of the sample optimal portfolio. This analysis allows us to

understand the uncertainty that investors face when they invest in the sample optimal port-

folio of a multi-factor asset pricing model. Our analysis also allows us to easily obtain the

limiting joint distributions of the in-sample and out-of-sample Sharpe ratios under various
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assumptions. More importantly, our analysis allows us to predict the out-of-sample perfor-

mance of a sample optimal portfolio constructed based on the factors of an asset pricing

model. When estimation risk is taken into account, we do not find very strong evidence that

many of the multi-factor asset pricing models can deliver superior out-of-sample performance

than the value-weighted market portfolio, with the lone exception of the most recent HMXZ

q5 model.

One of the limitations of our analysis is that it is based on the i.i.d. multivariate normality

assumption for the returns of the traded factors. With fat-tailed distributions, it is quite

conceivable that the problem with estimation risk is more severe than in the normality case.

So one should take our result as a lower bound on the impact of estimation risk on the out-of-

sample performance of multi-factor models. In addition, if there is a concern that parameters

in these multi-factor models are not constant over time, then there is an additional source

of risk that hampers the out-of-sample performance of the sample optimal portfolio based

on a multi-factor model.
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Appendix

Proof of Proposition 1: Under the multivariate normality assumption, it is well known that

µ̂ and Σ̂ are independent of each other and have the following distributions:

µ̂ ∼ N (µ,Σ/T ), (A1)

Σ̂ ∼ WN(T − 1,Σ/T ), (A2)

whereWN(T−1,Σ/T ) is a Wishart distribution with T−1 degrees of freedom and covariance

matrix Σ/T . Define η = Σ−
1
2µ/θ, we have η′η = 1. Let P be an N ×N orthonormal matrix

with its first column is equal to η. By defining

z =
√
TP ′Σ−

1
2 µ̂ ∼ N

([ √
Tθ

0N−1

]
, IN

)
, (A3)

W = TP ′Σ−
1
2 Σ̂Σ−

1
2P ∼ WN(T − 1, IN), (A4)

we can write

θ̂ = (µ̂′Σ̂−1µ̂)
1
2 = (z′W−1z)

1
2 , (A5)

θ̃ =
µ′Σ̂−1µ̂

(µ̂′Σ̂−1ΣΣ̂−1µ̂)
1
2

=

√
Tθe′1W

−1z

(Tz′W−2z)
1
2

=
θe′1W

−1z

(z′W−2z)
1
2

, (A6)

where e1 = [1, 0′N−1]
′. Define an N × N orthonormal matrix Q = [z̃, Q1] with its first

column is equal to z̃ ≡ z/(z′z)
1
2 . Let

A = (Q′W−1Q)−1 =

[
z̃′W−1z̃ z̃′W−1Q1

Q′1W
−1z̃ Q′1W

−1Q1

]−1
≡
[
A11 A12

A21 A22

]
∼ WN(T − 1, IN), (A7)

where A11 is the (1, 1) element of A. Theorem 3.2.10 of Muirhead (1982) suggests that

u1 ≡ A11·2 = A11 − A12A
−1
22 A21 ∼ χ2

T−N , (A8)

and it is independent of A12 and A22. In addition, using the result of Dickey (1967), we can

show that

− A−122 A21 ∼
x
√
u2
, (A9)

where x ∼ N (0N−1, IN−1), u2 ∼ χ2
T−N+1, and they are independent of each other and u1.

Since the distribution of A is independent of z, x, u1 and u2 are also independent of z. Using

the formula for the inverse of a partitioned matrix, we can easily verify that

z̃′W−1z̃ = A−111·2 =
1

u1
, (A10)
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Q′1W
−1z̃ = −A−122 A21A

−1
11·2 =

x

u1
√
u2
. (A11)

With these identities, we can write

z′W−2z = z′W−1 (z̃z̃′ +Q1Q
′
1)W

−1z = (z′z)

(
1

u21
+

x′x

u21u2

)
. (A12)

Let z1 ∼ N (
√
Tθ, 1) and x1 ∼ N (0, 1) be the first element of z and x, respectively. We can

write z′z = z21 + u and x′x = x21 + u3, where u ∼ χ2
N−1 and u3 ∼ χ2

N−2. It follows that

z′W−2z =
(z21 + u)

u21

(
1 +

x21 + u3
u2

)
. (A13)

Without loss of generality, let the first column of Q1 be

ξ =
(IN − z̃z̃′)e1

[e′1(IN − z̃z̃′)e1]
1
2

=
(IN − z̃z̃′)e1√

1− z21
z′z

. (A14)

From (A11), we know that

x1
u1
√
u2

= ξ′W−1z̃ =
e′1W

−1z̃ − e′1z̃

u1√
1− z21

z′z

=
e′1W

−1z − z1
u1√

u
, (A15)

and hence

e′1W
−1z =

z1
u1

+
x1
√
u

u1
√
u2

=
1

u1

(
z1 +

x1
√
u

√
u2

)
. (A16)

Define q1 = x1/
√
x′x and q2 = z2/

√
u, where z2 ∼ N (0, 1) is the second element of z. It

is well known that q1 is independent of x′x and q2 is independent of u (see for example,

Theorem 1.5.6 of Muirhead (1982)). Since x is independent of u, q1 and q2 are independent

of both u and x′x. In addition, q1 and q2 have the same distribution, so we can replace q1

with q2 and write

x1
√
u =

x1√
x′x

√
x′x
√
u

d
=

z2√
u

√
x′x
√
u = z2

√
x′x. (A17)

Letting g = x′x/u2, we can write

e′1W
−1z =

z1 +
√
gz2

u1
, (A18)

z′W−2z =
(z′z)(1 + g)

u21
. (A19)
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Let

b =
1

1 + g
=

u2
x′x+ u2

∼ Beta

(
T −N + 1

2
,
N − 1

2

)
(A20)

and z′z = z21 + z22 + u0, where u0 ∼ χ2
N−2 and it is independent of z1 and z2, we have

θ̂ = (z′W−1z)
1
2 = (z′z)

1
2 (z̃′W−1z̃)

1
2
d
=

√
z21 + z22 + u0√

u1
, (A21)

θ̃ =
θe′1W

−1z√
z′W−2z

=
θ(
√
bz1 +

√
1− bz2)

(z′z)
1
2

d
=
θ(
√
bz1 +

√
1− bz2)√

z21 + z22 + u0
. (A22)

Finally, let z̃ =
√
bz1 +

√
1− bz2 ∼ N (

√
b
√
Tθ, 1) and ũ = z21 + z22 + u0 − z̃2 = z′z − z̃2 ∼

χ2
N−1((1 − b)Tθ2), and conditional on b, z̃ and ũ are independent of each other. Therefore,

we can write

θ̂
d
=

√
z̃2 + ũ
√
u1

, (A23)

θ̃
d
=

θz̃√
z̃2 + ũ

. (A24)

This completes the proof.

Proof of Lemma 1: We first cite some explicit expressions of moments of noncentral chi-

squared and beta random variables. Suppose X ∼ χ2
ν(λ) and B ∼ Beta(ν1, ν2/2). We

have

E[Xr] =
2rΓ

(
ν
2

+ r
)

Γ
(
ν
2

) 1F1

(
−r; ν

2
;−λ

2

)
for r > −ν

2
, (A25)

E[Br] =
B(ν1 + r, ν2)

B(ν1, ν2)
for r > −ν1, (A26)

where B(a, b) = Γ(a)Γ(b)/Γ(a + b) is the beta function. (A25) is given in Krishnan (1967),

and (A26) is obtained by direct integration. Using (A25) and the fact that z̃2 + ũ ∼ χ2
N(Tθ2)

and it is independent of u1, we can obtain E[θ̂] and E[θ̂2] as

E[θ̂] = E[(z̃2 + ũ)
1
2 ]E[u

− 1
2

1 ]

=
Γ
(
N+1
2

)
Γ
(
T−N−1

2

)
Γ
(
N
2

)
Γ
(
T−N

2

) 1F1

(
−1

2
;
N

2
;−Tθ

2

2

)
for T ≥ N + 2, (A27)

E[θ̂2] = E[z̃2 + ũ]E[u−11 ]

=
N + Tθ2

T −N − 2
for T ≥ N + 3, (A28)
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For θ̃, we use independence between b and (z1, z2, u0) in (A22) and apply (A26) to obtain

E[θ̃] = θE[b
1
2 ]E

[
z1√

z21 + z22 + u0

]
= θ

B
(
T−N+2

2
, N−1

2

)
B
(
T−N+1

2
, N−1

2

)E[ z1√
z21 + z22 + u0

]
. (A29)

By using the symmetry argument, the term
√

1− bz2 drops out because z2 ∼ N (0, 1). For

the last expectation, we use a lemma in Kan and Wang (2019) to show that

E

[
z1√

z21 + z22 + u0

]
=
√
TθE

[
1
√
y

]
, (A30)

where y ∼ χ2
N+2(Tθ

2). Then using (A25), we obtain

E[θ̃] = θ
Γ
(
T−N+2

2

)
Γ
(
T
2

)
Γ
(
T−N+1

2

)
Γ
(
T+1
2

)√TθΓ (N+1
2

)
√

2Γ
(
N+2
2

) 1F1

(
1

2
;
N + 2

2
;−Tθ

2

2

)
.

For E[θ̃2], we use (A22) and apply (A26) to obtan

E[θ̃2] = θ2E

[
bz21 + (1− b)z22 + 2

√
b(1− b)z1z2

z21 + z22 + u0

]

= θ2E
[
bz21 + (1− b)z22
z21 + z22 + u0

]
=
θ2

T
E
[

(T −N + 1)z21 + (N − 1)z22
z21 + z22 + u0

]
. (A31)

Note that the term 2
√
b(1− b)z1z2/(z21 + z22 +u0) vanishes in the above expectation because

of symmetry. The last expectation term can be written as E[(z′Az)/(z′z)], where A =

Diag(T − N + 1, N − 1, 0′N−2). Using Theorem 4 of Hillier, Kan, and Wang (2014), we

obtain the expectation of the ratio of quadratic form in z as

E
[
z′Az

z′z

]
=
T

N
1F1

(
1;
N + 2

2
;−Tθ

2

2

)
+
Tθ2(T −N + 1)

N + 2
1F1

(
1;
N + 4

2
;−Tθ

2

2

)
= T −N + 1− (N − 1)(T −N)

N
1F1

(
1;
N + 2

2
;−Tθ

2

2

)
, (A32)

where the last equality follows from a recurrence relation of confluent hypergeometric func-

tion.12 It follows that

E[θ̃2] = θ2
[
T −N + 1

T
− (N − 1)(T −N)

NT
1F1

(
1;
N + 2

2
;−Tθ

2

2

)]
for T ≥ N + 1. (A34)

12The recurrence relation is

b1F1(a; b; z)− b1F1(a− 1; b; z) = z1F1(a; b+ 1; z). (A33)

The equality is obtained by setting a = 1, b = (N + 2)/2 and z = −Tθ2/2.
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Finally, using (9) and (10), E[θ̂θ̃] is given by

E[θ̂θ̃] = θE
[
z̃
√
u1

]
= θE[b

1
2 ]
√
TθE[u

− 1
2

1 ]

= θ
B
(
T−N+2

2
, N−1

2

)
B
(
T−N+1

2
, N−1

2

)√Tθ Γ
(
T−N−1

2

)
√

2Γ
(
T−N

2

)
=

θ2
√
T (T −N)Γ

(
T
2

)
√

2(T −N − 1)Γ
(
T+1
2

) for T ≥ N + 2. (A35)

This completes the proof.

Proof of Lemma 2: We first prove E[θ̃] < θ. Note that

θ̃ =
ŵ′µ

(ŵ′Σŵ)
1
2

≤ w∗′µ

(w∗′Σw∗)
1
2

= θ, (A36)

with the equality holds if and hold if ŵ is proportional to w∗. Since this event has probability

zero, we can write the above as θ̃ < θ. Taking expectation, we obtain E[θ̃] < θ.

Next we prove E[θ̂] > θ. Note that

θ̂ =
ŵ′µ̂

(ŵ′Σ̂ŵ)
1
2

≥ w∗′µ̂

(w∗′Σ̂w∗)
1
2

, (A37)

with the equality holds if and only if ŵ is proportional to w∗. Since this event has probability

zero, we write the above as a strict inequality. Taking expectation on both sides and using

the fact that µ̂ is independent of Σ̂, we have

E[θ̂] > E

[
w∗′µ̂

(w∗′Σ̂w∗)
1
2

]
= w∗′µE

[
1

(w∗′Σ̂w∗)
1
2

]
= θE

[(
w∗′Σw∗

w∗′Σ̂w∗

) 1
2

]
. (A38)

Using 3.2.5 of Muirhead (1982), we know y ≡ w∗′Σ̂w∗/(Tw∗′Σw∗) ∼ χ2
T−1, so we have

E

[(
w∗′Σw∗

w∗′Σ̂w∗

) 1
2

]
= T

1
2E
[
y−

1
2

]
≥ T

1
2

(E[y])
1
2

=
T

1
2

(T − 1)
1
2

> 1, (A39)

where the first inequality follows because of Jensen’s inequality. Therefore, we have E[θ̂] > θ.

Finally, we use Lemma 1 to obtain the explicit expression of Cov[θ̂, θ̃] as

Cov[θ̂, θ̃] =

√
Tθ2(T −N)Γ

(
T
2

)
√

2(T −N − 1)Γ
(
T+1
2

) [1−
Γ
(
N+1
2

)2
Γ
(
N+2
2

)
Γ
(
N
2

)
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× 1F1

(
−1

2
;
N

2
;−Tθ

2

2

)
1F1

(
1

2
;
N + 2

2
;−Tθ

2

2

)]
. (A40)

In order to prove Cov[θ̂, θ̃] > 0, we cite Theorem 3.1 from Kalmykov and Karp (2013), which

suggests:

Suppose {fk}∞k=0 is a non-trivial nonnegative log-concave sequence without internal zeros.

Then the function

f(y) =
∞∑
k=0

fkx
k

Γ(y + k)k!
(A41)

is strictly log-concave on (0,∞) for each fixed x > 0. Moreover,

f(α + y)f(β + y)− f(α + β + y)f(y) > 0 (A42)

for y ≥ −1, α > 0, β > 0 and α + y ≥ 0, β + y ≥ 0.

For our problem, we set fk = (a)k, y = b and α = β = 1/2, which gives

1F1

(
a; b+ 1

2
;x
)2

Γ
(
b+ 1

2

)2 = f

(
b+

1

2

)2

> f(b+ 1)f(b) =
1F1(a; b+ 1;x)1F1(a; b;x)

Γ(b+ 1)Γ(b)
. (A43)

It remains to show that (a)k is log-concave, i.e.,

(a)k+1

(a)k
>

(a)k
(a)k−1

, (A44)

or equivalently
Γ(a+ k + 1)

Γ(a+ k)
>

Γ(a+ k)

Γ(a+ k − 1)
. (A45)

Using the Cauchy-Schwarz inequality, it is easy to establish for x, y > 0, we have Γ((x +

y)/2)2 ≤ Γ(x)Γ(y) with equality holds if and only if x = y. Putting x = a + k + 1 and

y = a+ k − 1, we obtain (A45).

Putting a = (N + 1)/2, b = N/2 and x = Tθ2/2 in (A43), we obtain

1F1

(
N+1
2

; N
2

; Tθ
2

2

)
Γ
(
N
2

) 1F1

(
N+1
2

; N+2
2

; Tθ
2

2

)
Γ
(
N+2
2

) <

1F1

(
N+1
2

; N+1
2

; Tθ
2

2

)
Γ
(
N+1
2

)
2

⇒
e
Tθ2

2 1F1

(
−1

2
; N

2
;−Tθ2

2

)
Γ
(
N
2

) e
Tθ2

2 1F1

(
1
2
; N+2

2
;−Tθ2

2

)
Γ
(
N+2
2

) <

[
e
Tθ2

2

Γ
(
N+1
2

)]2
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⇒
Γ
(
N+1
2

)2
Γ
(
N+2
2

)
Γ
(
N
2

)1F1

(
−1

2
;
N

2
;−Tθ

2

2

)
1F1

(
1

2
;
N + 2

2
;−Tθ

2

2

)
< 1, (A46)

and we use the Kummer transformation of the confluent hypergeometric function in the

second line. This completes the proof.

Proof of Proposition 2: We need to find out the range of z̃ for P[θ̂ < c1, θ̃ < c2] from

Proposition 1. When c2 > 0, there are two cases to consider: (1) 0 < ũ < c21(θ
2 − c22)u1/θ2.

For this case, we need c2
√
ũ/(θ2 − c22) < z̃ < −

√
u1c21 − ũ. (2) c21(θ

2 − c22)u1/θ2 < ũ < c21u1.

For this case, we need
√
u1c21 − ũ < z̃ < −

√
u1c21 − ũ. Together, we have when c2 > 0,

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞
0

∫ 1

0

∫ c21(θ
2−c22)v
θ2

0

[
Φ

(
c2
√
u√

θ2 − c22
−
√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv

+

∫ ∞
0

∫ 1

0

∫ c21v

c21(θ
2−c22)v
θ2

[
Φ

(√
c21v − u−

√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv

=

∫ ∞
0

∫ 1

0

∫ c21v

0

[
Φ

(
min

[
c2
√
u√

θ2 − c22
,
√
c21v − u

]
−
√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv. (A47)

When c2 ≤ 0, only the first case is possible and we have

P[θ̂ < c1, θ̃ < c2]

=

∫ ∞
0

∫ 1

0

∫ c21(θ
2−c22)v
θ2

0

[
Φ

(
c2
√
u√

θ2 − c22
−
√
Tθ
√
b

)
− Φ

(
−
√
c21v − u−

√
Tθ
√
b

)]
× fũ(u)fb(b)fu1(v)dudbdv. (A48)

Taking derivative of P[θ̂ < c1, θ̃ < c2] with respect to c1 and c2 and using the Leibniz integral

rule, we obtain the joint density of (θ̂, θ̃) for both cases as

fθ̂,θ̃(c1, c2) =

∫ ∞
0

∫ 1

0

fũ

(
c21(θ

2 − c22)v
θ2

)
φ

(
c1c2
√
v

θ
−
√
Tθ
√
b

)
2c21v

3
2

θ
fb(b)fu1(v)dbdv.

(A49)

This completes the proof.
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Proof of Lemma 3: We denote

U(a; b;x) =
1

Γ(a)

∫ ∞
0

e−xtta−1(1 + t)b−a−1dt (A50)

as the confluent hypergeometric function of second kind. For b−1 < α, we have the following

integral identity (see, for example, Gradshtyen and Ryzhik (2007), 7.621.6)∫ ∞
0

xα−1e−xU(a; b;x)dx =
Γ(α)Γ(1− b+ α)

Γ(a− b+ α + 1)
. (A51)

In order to prove (27) and (28), we first establish the following two identities. Suppose a > 0,

b ≥ 1, and c > 0. We have∫ ∞
−∞

e−cz
2+hz(z2)b−1zU(a; b; cz2)dz =

hΓ
(
b+ 1

2

)
Γ
(
3
2

)
cb+

1
2 Γ
(
a+ 3

2

) 1F1

(
b+

1

2
; a+

3

2
;
h2

4c

)
, (A52)∫ ∞

0

e−wwb+c−20F1(c;hw)U(a; b;w)dw =
Γ(c)Γ(b+ c− 1)

Γ(a+ c)
1F1(b+ c− 1; a+ c;h). (A53)

For (A52), we write∫ ∞
−∞

e−cz
2+hz(z2)b−1zU(a; b; cz2)dz =

∫ ∞
0

e−cz
2

(ehz − e−hz)z2b−1U(a; b; cz2)dz

= 2

∫ ∞
0

e−cz
2
∞∑
k=0

(hz)2k+1

(2k + 1)!
z2b−1U(a; b; cz2)dz. (A54)

Let x = cz2, we have dx = 2czdz and

∫ ∞
−∞

e−cz
2+hz(z2)b−1zU(a; b; cz2)dz =

1

cb

∞∑
k=0

∫ ∞
0

e−x

(
h2x
c

)k+ 1
2

(2k + 1)!
xb−1U(a; b;x)dx

=
h

cb+
1
2

∞∑
k=0

(
h2

c

)k
4kk!

(
3
2

)
k

∫ ∞
0

e−xxb+k−
1
2U(a; b;x)dx

=
h

cb+
1
2

∞∑
k=0

(
h2
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)k
k!
(
3
2

)
k

Γ
(
b+ 1

2
+ k
)

Γ
(
3
2

+ k
)

Γ
(
a+ 3

2
+ k
)

=
hΓ
(
b+ 1

2

)
Γ
(
3
2

)
cb+

1
2 Γ
(
a+ 3

2

) 1F1

(
b+

1

2
; a+

3

2
;
h2

4c

)
, (A55)

where the second last equality follows from (A51).
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For (A53), we write∫ ∞
0

e−wwb+c−20F1(c;hw)U(a; b;w)dw =
∞∑
k=0

∫ ∞
0

(hw)k

(c)kk!
e−wwb+c−2U(a; b;w)dw

=
∞∑
k=0

hk

(c)kk!

∫ ∞
0

e−wwb+c−2+kU(a; b;w)dw

=
∞∑
k=0

hk

(c)kk!

Γ(c+ k)Γ(b+ c− 1 + k)

Γ(a+ c+ k)

=
Γ(c)Γ(b+ c− 1)

Γ(a+ c)
1F1(b+ c− 1; a+ c;h), (A56)

where the second last equality follows from (A51).

For E[θ̃|θ̂], we use (A22) to write

E[θ̃|θ̂] = θE
[√

b
]
E

[
z1√

z21 + z22 + u0

∣∣∣∣∣ θ̂
]

+ θE
[√

1− b
]
E

[
z2√

z21 + z22 + u0

∣∣∣∣∣ θ̂
]

= θE
[√

b
]
E

[
z1√
z21 + ũ1

∣∣∣∣∣ θ̂
]

+ θE
[√

1− b
]
E

[
z2√
z22 + ũ2

∣∣∣∣∣ θ̂
]

= θ
B
(
T−N+2

2
, N−1

2

)
B
(
T−N+1

2
, N−1

2

)E[ z1√
z21 + ũ1

∣∣∣∣∣ θ̂
]

+ θ
B
(
N
2
, T−N+1

2

)
B
(
N−1
2
, T−N+1

2

)E[ z2√
z22 + ũ2

∣∣∣∣∣ θ̂
]
, (A57)

where ũ1 = z22 + u0 ∼ χ2
N−1 and ũ2 = z21 + u0 ∼ χ2

N−1(Tθ
2). The joint density of z1, ũ1, and

u1, and that of z2, ũ2, and u1, where u1 ∼ χ2
T−N , are given by

f(z1, ũ1, u1) = φ
(
z1 −

√
Tθ
)
fũ1(ũ1)fu1(u1), (A58)

f(z2, ũ2, u1) = φ(z2)fũ2(ũ2)fu1(u1). (A59)

Using the representation of θ̂ in (A21), we make the change of variable θ̂ =
√
z21 + ũ1/

√
u1

and θ̂ =
√
z22 + ũ2/

√
u1 in (A58) and (A59), respectively, we obtain

f(z1, ũ1, θ̂) = φ
(
z1 −

√
Tθ
)
fũ1(ũ1)fu1

(
z21 + ũ1

θ̂2

)
2(z21 + ũ1)

θ̂3
, (A60)

f(z2, ũ2, θ̂) = φ(z2)fũ2(ũ2)fu1

(
z22 + ũ2

θ̂2

)
2(z22 + ũ2)

θ̂3
. (A61)

The first expectation term has the following explicit expression:

E

[
z1√
z21 + ũ1

∣∣∣∣∣ θ̂
]
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=

∫ ∞
0

∫ ∞
−∞

z1√
z21 + ũ1

f(z1, ũ1, θ̂)

fθ̂(θ̂)
dz1dũ1

=
1

fθ̂(θ̂)

∫ ∞
−∞

√
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2
;
T

2
;
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√
Tθ)dz1

=
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Tθ2

2 θ̂N−3

fθ̂(θ̂)
√
πΓ
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2

) ∫ ∞
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2
1(1+θ̂
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+
√
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2

U
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2
;
T

2
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z21(1 + θ̂2)

2θ̂2
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dz1

=
e−

Tθ2

2

√
2
√
TθΓ

(
T+1
2

)
θ̂N

fθ̂(θ̂)Γ
(
T−N

2

)
Γ
(
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2

)
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2

1F1

(
T + 1

2
;
N + 2

2
;
Tθ2θ̂2

2(1 + θ̂2)

)
, (A62)

where the last equality follows from (A52). For the second expectation term, we have

E

[
z2√
z22 + ũ2

∣∣∣∣∣ θ̂
]

=

∫ ∞
0

∫ ∞
−∞

z2√
z22 + ũ2

f(z2, ũ2, θ̂)

fθ̂(θ̂)
dz2dũ2 = 0 (A63)

because of symmetry. It follows that

E[θ̃|θ̂] =
θ2e−

Tθ2

2 θ̂N

fθ̂(θ̂)(1 + θ̂2)
T+1
2

√
T (T −N)Γ

(
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)
√

2Γ
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)1F1
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2
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Tθ2θ̂2

2(1 + θ̂2)

)
. (A64)

Using the expression of fθ̂(θ̂) from (19) and denoting y = Tθ2θ̂2/[2(1 + θ̂2)], we obtain

E[θ̃|θ̂] =
2θ
√
y

N

Γ
(
T−N+2

2

)
1F1

(
T+1
2

; N+2
2

; y
)

Γ
(
T−N+1

2

)
1F1

(
T
2
; N

2
; y
) . (A65)

For E[θ̃2|θ̂], we use (A22) to write

E[θ̃2|θ̂] = θ2E[b]E
[

z21
z21 + z22 + u0

∣∣∣∣ θ̂]+ 2θ2E[
√
b(1− b)]E

[
z1z2

z21 + z22 + u0

∣∣∣∣ θ̂]
+ θ2E[1− b]E
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= θ2
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T
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z21 + ũ1

∣∣∣∣ θ̂]+
N − 1

T
E
[

z22
z22 + ũ2

∣∣∣∣ θ̂]) , (A66)

where the second term drops out because of symmetry. Again, by symmetry, we have

E
[

z21
z21 + z22 + u0

∣∣∣∣ θ̂]+ (N − 1)E
[

z22
z21 + z22 + u0

∣∣∣∣ θ̂] = 1. (A67)

It follows that

E
[

z21
z21 + ũ1

∣∣∣∣ θ̂] = 1− (N − 1)E
[

z22
z22 + ũ2

∣∣∣∣ θ̂] (A68)
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and we have

E[θ̃2|θ̂] = θ2
(
T −N + 1

T
− (T −N)(N − 1)

T
E
[

z22
z22 + ũ2

∣∣∣∣ θ̂]) . (A69)

Following the same transformation as before, we have

E
[

z22
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∫ ∞
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∫ ∞
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(A70)

Making a transformation of z = z22/ũ2, we have ũ2dz = 2z2dz2 and the term in the squared

brackets can be simplified to∫ ∞
0

z22e
− z

2
2(1+θ̂
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)
, (A71)

where in the last equality we use the definition of U(a; b;x) from (A50). Using this expression

and the expression of fũ2(ũ2), we have

E
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×
∫ ∞
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, (A72)

where we use the transformation of w = (1 + θ̂2)ũ2/(2θ̂
2) in the second last equality, and the

last equality follows from (A53). Using (19) and denoting y = Tθ2θ̂2/[2(1 + θ̂2)] in (A69),

we obtain

E[θ̃2|θ̂] = θ2

[
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. (A73)

This completes the proof.

Proof of Proposition 3: Using the representation of θ̂ in (A21) and defining w1 and w2 as

z1 −
√
Tθ = w1 ∼ N (0, 1), (A74)

T − u1√
2T

d→ w2 ∼ N (0, 1), (A75)

where the limiting distribution of (T − u1)/
√

2T is obtained by using the central limit

theorem, we can write
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2
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T

) 1
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+ θ

d→ θw2√
2
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(

0, 1 +
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2
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. (A76)

39



The last equality is obtained by using the fact that u1/T
p→ 1, (z21 + z22 + u0)/T

p→ θ2, and

(w2
1 + z22 + u0)/

√
T

p→ 0.

Using the representation of θ̃ in (A22) and defining v as

T (1− b) d→ v ∼ χ2
N−1, (A77)

we can write

T (θ̃ − θ) = Tθ

(√
bz1 +

√
1− bz2 −

√
z21 + z22 + u0√

z21 + z22 + u0

)

= −Tθ

[
(1− b)z21 + bz22 + u0 − 2

√
b(1− b)z1z2√

z21 + z22 + u0(
√
bz1 +

√
1− bz2 +

√
z21 + z22 + u0)

]

= −θ

(1− b)(Tθ2 + 2
√
Tθw1 + w2

1) + bz22 + u0 − 2
√
b(1− b)(

√
Tθ + w1)z2(

z21+z
2
2+u0
T

) 1
2

[√
bz1√
T

+
√
1−bz2√
T

+
(
z21+z

2
2+u0
T

) 1
2

]


d→ −θ
[
θ2v + z22 + u0 − 2θ

√
vz2

θ(θ + θ)

]
= −θ

2v + z22 + u0 − 2θ
√
vz2

2θ
≡ Y. (A78)

The second last equality follows because b
p→ 1, (1 − b)

√
Tθw1

p→ 0, (1 − b)w2
1

p→ 0,√
b(1− b)w1z2

p→ 0, (z21 + z22 + u0)/T
p→ θ2,

√
bz1/
√
T

p→ θ,
√

1− bz2/
√
T

p→ 0. It remains

to show that Y ∼ −(1 + θ2)/(2θ)χ2
N−1. In order to show that, we let

W =

[ √
v 0
z2
√
u0

] [ √
v z2

0
√
u0

]
. (A79)

From the Bartlett decomposition of Wishart distribution, we know W ∼ W2(N − 1, I2).

Then using 3.2.8 of Muirhead (1982), we have

Y = −θ
2v + z22 + u0 − 2θ

√
vz2

2θ
= − [θ, −1]W [θ, −1]′

2θ
∼ −

(1 + θ2)χ2
N−1

2θ
. (A80)

Finally, X is independent of Y because X is a function z1 and u1, and Y is a function of

z2, b, u0, and (z1, u1) are independent of (z2, b, u0) from the proof of Proposition 1. This

completes the proof.

Proof of Proposition 4: Based on the definition of random variables in Proposition 1, we let

z̃1 =
z1√
T
, (A81)
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z̃2 =
z2√
T
, (A82)

w1 =
u0
T
, (A83)

w2 =
u1
T
. (A84)

Using the central limit theorem, we can easily show that when N → ∞, T → ∞, and

N/T → ρ, we have

√
T (z̃1 − θ) ∼ N (0, 1), (A85)
√
T z̃2 ∼ N (0, 1), (A86)

√
T (w1 − ρ)

d→ N (0, 2ρ), (A87)
√
T (w2 − (1− ρ))

d→ N (0, 2(1− ρ)), (A88)
√
T (b− (1− ρ))

d→ N (0, 2ρ(1− ρ)), (A89)

and these five random variables are independent of each other. From (A21) and (A22), we

can write θ̂ and θ̃ as

θ̂ =
(z̃21 + z̃22 + w1)

1
2

w
1
2
2

, (A90)

θ̃ =
θ(
√
bz̃1 +

√
1− bz̃2)

(z̃21 + z̃22 + w1)
1
2

, (A91)

and both of them are functions of (z̃1, z̃2, w1, w2, b). Then using the delta method and upon

simplification, we obtain

√
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[ θ̂

θ̃

]
−


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θ2+ρ√
1−ρ
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 d→ N

02,
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(A92)

This completes the proof.
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Cochrane, John H., and Jesús Saá-Requejo, 2000, Beyond arbitrage: Good-deal asset price

bounds in incomplete markets, Journal of Political Economy 108, 79–119.

Detzel, Andrew, Robert Novy-Marx, and Mihail Velikov, 2019, Model selection with trans-

action costs, working paper.

Dickey, James M., 1967, Matricvariate generalizations of the multivariate t distribution and

the inverted multivariate t distribution, Annals of Mathematical Statistics 38, 511–518.

El Karoui, Noureddine, 2010, High-dimensionality effects in the Markowitz problem and

other quadratic programs with linear constraints: risk underestimation, Annals of

Statistics 38, 3487–3566.

42



El Karoui, Noureddine, 2013, On the realized risk of high-dimensional Markowitz portfolios,

SIAM Journal on Financial Mathematics 4, 737–783.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on

stocks and bonds, Journal of Financial Economics 33, 3–56.

Fama, Eugene F., and Kenneth R. French, 2015, A five-factor asset pricing model, Journal

of Financial Economics 116, 1–22.

Fama, Eugene F., and Kenneth R. French, 2018, Choosing factors, Journal of Financial

Economics 128, 234–252.

Frazzini, Andrea, David Kabiller, and Lasse H. Pedersen, 2018, Buffett’s alpha, Financial

Analysts Journal 74, 35–55.

Frazzini, Andrea, and Lasse H. Pedersen, 2014, Betting against beta, Journal of Financial

Economics 111, 1–25.

Gibbons, Michael, Stephen Ross, and Jay Shanken, 1989, A test of the efficiency of a given

portfolio, Econometrica 57, 1121–1152.

Gradshteyn, I. S., and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edition

(Academic Press, London).

Harvey, Campbell, and Yan Liu, 2013, Multiple testing in economics, working paper, Duke

University.

Hillier, Grant, Raymond Kan, and Xiaolu Wang, 2014, Generating functions and short

recursions, with applications to the moments of quadratic Forms in noncentral normal

vectors, Econometric Theory 30, 436–473.

Hou, Kewei, Haitao Mo, Chen Xue, and Lu Zhang, 2019, q5, working paper, Ohio State

University.

Hou, Kewei, Chen Xue, and Lu Zhang, 2015, Digesting anomalies: An investment approach,

Review of Financial Studies 28, 650–705.

Kan, Raymond, and Xiaolu Wang, 2019, On the economic value of alpha, Working paper,

University of Toronto.

43



Kan, Raymond, and Cesare Robotti, 2016, The exact distribution of the Hansen-Jagannathan

bound, Management Science 62, 1915–1943.

Kalmykov, S. I., and D. B. Karp, 2013, Log-concavity for series in reciprocal gamma func-

tions and applications, Integral Transforms and Special Functions 24, 859–872.

Krishnan, M., 1967, The moments of a doubly noncentral t-distribution. Journal of the

American Statistical Association 62, 278–287.

Lintner, John, 1965, The valuation of risk assets and the selection of risky investments in

stock portfolios and capital budgets, Review of Economics and Statistics 47, 13–37.

Lo, Andrew W., 2002, The statistics of Sharpe ratios, Financial Analyst Journal 58, 36–52.

Lo, Andrew W., and A. Craig MacKinlay, 1990, Data-snooping biases in tests of financial

asset pricing models, Review of Financial Studies 3, 431–467.

MacKinlay, A. Craig, 1995, Multi-factor models do not explain deviations from the CAPM,

Journal of Financial Economics 38, 3–28.

Muirhead, Robb J., 1982, Aspects of Multivariate Statistical Theory (Wiley, New York).

Novy-Marx, Robert, and Mihail Velikov, 2016, A taxonomy of anomalies and their trading

costs, Review of Financial Studies 29, 104–147.

Patton, Andrew J., and Brian M. Weller, 2019, What you see is not what you get: the costs

of trading market anomalies, Journal of Financial Economics, forthcoming.

Ross, Stephen A., 1976, The arbitrage theory of capital asset pricing, Journal of Economic

Theory 13, 341–360.

Sharpe, William F., 1964, Capital asset prices: A theory of market equilibrium under

conditions of risk, Journal of Finance 19, 425–442.

44



Figure 1: Ratio of Expected Out-of-sample Sharpe Ratio to Expected In-sample
Sharpe Ratio of an Asset Pricing Model

The figure plots the ratio of expected out-of-sample Sharpe ratio to expected in-sample
Sharpe ratio, E[θ̃]/E[θ̂], as a function of sample size, T , for an asset pricing model with N
traded factors and a population Sharpe ratio of θ. Plots for two different values of number of
traded factors (N = 3 and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 2: Correlation between In-sample and Out-of-sample Sharpe Ratios of an
Asset Pricing Model

The figure plots the correlation coefficient between the in-sample and out-of-sample Sharpe
ratios, ρ(θ̂, θ̃), as a function of sample size, T , for an asset pricing model with N traded
factors and a population Sharpe ratio of θ. Plots for two different values of number of traded
factors (N = 3 and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 3: Density of In-sample Sharpe Ratio of an Asset Pricing Model (T = 120)

The figure plots the density of θ̂/θ of an asset pricing model with N traded factors when
the length of time series is T = 120, where θ̂ is the in-sample Sharpe ratio and θ is the
population Sharpe ratio. Plots for two different values of number of traded factors (N = 3
and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 4: Density of Out-of-sample Sharpe Ratio of an Asset Pricing Model
(T = 120)

The figure plots the density of θ̃/θ of an asset pricing model with N traded factors when
the length of time series is T = 120, where θ̃ is the out-of-sample Sharpe ratio and θ is the
population Sharpe ratio. Plots for two different values of number of traded factors (N = 3
and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 5: Joint Density of In-sample and Out-of-sample Sharpe Ratios of an
Asset Pricing Model (T = 120)

The figure plots the joint density of θ̂/θ and θ̃/θ of an asset pricing model with N traded
factors when the length of time series is T = 120, where θ̂ is the in-sample Sharpe ratio, θ̃ is
the out-of-sample Sharpe ratio, and θ is the population Sharpe ratio. Plots for two different
values of number of traded factors (N = 3 and 6) and population Sharpe ratio (θ = 0.2 and
0.4) are presented.
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Figure 6: Conditional Density of Out-of-sample Sharpe Ratio of an Asset
Pricing Model (T = 120)

The figure plots the conditional density of the normalized out-of-sample Sharpe ratio (θ̃/θ)
of an asset pricing model when conditional on the in-sample Sharpe ratio (θ̂) is at its 10th
(solid line), 50th (dotted line), and 90th (dashed line) percentiles. The length of time series
is T = 120 and plots for two different values of number of traded factors (N = 3 and 6) and
population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 7: Expected Conditional Out-of-sample Sharpe Ratio of an Asset Pricing
Model (T = 120)

The figure plots the expected conditional normalized out-of-sample Sharpe ratio (E[θ̃|θ̂]/θ)
of an asset pricing model as a function of normalized in-sample Sharpe ratio (θ̂/θ). The
length of time series is T = 120 and plots for two different values of number of traded factors
(N = 3 and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 8: Exact and Approximate Densities of In-sample Sharpe Ratio of an
Asset Pricing Model (T = 120)

The figure plots the exact density (solid line) of the normalized in-sample Sharpe ratio (θ̂/θ)
and two different approximated density, the first one assumes N and T →∞, but N/T → ρ
(dotted line) and the second one assumes N is fixed is fixed but T →∞ (dashed line). The
length of time series is T = 120 and plots for two different values of number of traded factors
(N = 3 and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Figure 9: Exact and Approximate Densities of Out-of-sample Sharpe Ratio of an
Asset Pricing Model (T = 120)

The figure plots the exact density (solid line) of the normalized out-of-sample Sharpe ratio
(θ̃/θ) and two different approximated density, the first one assumes N and T → ∞, but
N/T → ρ (dotted line) and the second one assumes N is fixed is fixed but T →∞ (dashed
line). The length of time series is T = 120 and plots for two different values of number of
traded factors (N = 3 and 6) and population Sharpe ratio (θ = 0.2 and 0.4) are presented.
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Table I: In-sample Sharpe Ratios of the Sample Optimal Portfolio of Various Asset
Pricing Models

This table reports the in-sample Sharpe ratios (IS-SR) of eight asset pricing models for the full
sample period (1967–2018) as well as the two subperiods (1967–1992 and 1993–2018). The asset
pricing models included are: CAPM, Fama-French 3-factor model, Carhart 4-factor model, Betting-
against-beta (BAB) 2-factor model, Fama-French 5-factor model, HXZ’s q-factor model, Barillas
and Shanken (BS-6) 6-factor model, and HMXZ’s q5 model. The column “Year” presents the
year that the model was first published. The p-values from the Gibbons-Ross-Shanken F -test that
compares the Sharpe ratio of a given model with that of the CAPM are also reported in the table.

1967–2018 1967–1992 1993–2018

Year IS-SR p-value IS-SR p-value IS-SR p-value

CAPM 1964 0.117 0.089 0.148

FF-3 1993 0.195 0.001 0.239 0.001 0.175 0.270

Carhart-4 1997 0.288 0.000 0.379 0.000 0.242 0.013

BAB 2014 0.306 0.000 0.369 0.000 0.315 0.000

FF-5 2015 0.322 0.000 0.488 0.000 0.339 0.000

HXZ q 2015 0.416 0.000 0.611 0.000 0.346 0.000

BS-6 2018 0.485 0.000 0.786 0.000 0.373 0.000

HMXZ q5 2019 0.634 0.000 0.767 0.000 0.562 0.000
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Table II: Mutual Fund Performance Relative to In-sample Sharpe Ratios of Asset
Pricing Models

This table presents mutual fund performance in terms of sample Sharpe ratio over the period of
1993–2018 as well as the two subperiods 1993–2005 and 2006–2018, and compares mutual fund
performance with the in-sample Sharpe ratio of various asset pricing models. Sample Sharpe ratios
computed based on after-fee returns (AF-SR) and before-fee returns (BF-SR) are both obtained.
The upper panel reports the number of funds, the mean, the first quartile, the median, and the
third quartile of the cross-sectional sample Sharpe ratios. The bottom panel reports the proportion
(in percentage points) of the mutual funds outperforming the asset pricing models.

1993–2018 1993–2005 2006–2018

AF-SR BF-SR AF-SR BF-SR AF-SR BF-SR

N 3494 2107 2513

Mean 0.107 0.126 0.099 0.119 0.121 0.138

Q1 0.072 0.091 0.051 0.069 0.092 0.109

Median 0.113 0.130 0.104 0.124 0.119 0.136

Q3 0.145 0.162 0.151 0.171 0.148 0.164

AF-% BF-% AF-% BF-% AF-% BF-%

CAPM 22.90 34.83 27.91 38.54 22.16 33.98

FF-3 11.91 17.60 0.66 1.00 11.94 16.99

Carhart-4 3.86 4.75 0.24 0.28 11.10 15.64

BAB 0.77 1.40 0.19 0.28 5.41 6.29

FF-5 0.40 0.80 0.14 0.28 0.40 0.80

HXZ q 0.34 0.72 0.09 0.14 3.10 4.14

BS-6 0.17 0.37 0.05 0.09 1.67 2.39

HMXZ q5 0.03 0.03 0.00 0.05 0.04 0.04
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Table III: Out-of-sample Sharpe Ratios of the Sample Optimal Portfolio of Various
Asset Pricing Models

This table reports the out-of-sample Sharpe ratios (OS-SR) of various asset pricing models for three
different out-of-sample periods, 1993–2018, 1993–2005, and 2006–2018. For a given out-of-sample
period, we estimate the sample optimal portfolio using monthly data from 1967 to the beginning
of the out-of-sample period, and hold the portfolio weights constant throughout the out-of-sample
period. Out-of-sample Sharpe ratios are computed using the out-of-sample returns of the sample
optimal portfolio. For comparison, the in-sample Sharpe ratios (IS-SR) over the out-of-sample
periods are also reported in the table. Gibbons-Ross-Shanken F -test is conducted to compare IS-
SR of a given model with that of the CAPM. We also conduct one-sided test based on asymptotic
distribution to compare the OS-SR of a given model with that of the CAPM. ∗∗∗, ∗∗, ∗ denote
that the Sharpe ratio of the given model is higher than that of the CAPM at 1%, 5%, and 10%
significance levels.

1993–2018 1993–2005 2006–2018

IS-SR OS-SR IS-SR OS-SR IS-SR OS-SR

CAPM 0.148 0.148 0.145 0.145 0.152 0.152

FF-3 0.175 0.147 0.331∗∗∗ 0.294∗ 0.180 0.049

Carhart-4 0.242∗∗ 0.192 0.403∗∗∗ 0.319∗ 0.182 0.063

BAB 0.315∗∗∗ 0.221 0.406∗∗∗ 0.266 0.229∗∗ 0.221

FF-5 0.339∗∗∗ 0.193 0.425∗∗∗ 0.213 0.329∗∗ 0.197

HXZ q 0.346∗∗∗ 0.247 0.474∗∗∗ 0.253 0.259∗ 0.189

BS-6 0.373∗∗∗ 0.261 0.562∗∗∗ 0.335∗ 0.286 0.174

HMXZ q5 0.562∗∗∗ 0.475∗∗∗ 0.731∗∗∗ 0.555∗∗∗ 0.437∗∗∗ 0.419∗∗∗
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Table IV: Mutual Fund Performance Relative to Out-of-sample Sharpe Ratios of
Asset Pricing Models

This table reports the proportion (in percentage points) of mutual funds with sample Sharpe ratio
higher than the out-of-sample Sharpe ratios of various asset pricing models for three out-of-sample
periods: 1993–2018, 1993–2005, and 2006–2018. The sample optimal portfolios of various asset
pricing models are estimated using monthly data from 1967 to the beginning of the out-of-sample
period. Both after-fee (AF) and before-fee (BF) Sharpe ratios are obtained for mutual funds, and
they are compared with the out-of-sample Sharpe ratios of the asset pricing models.

1993–2018 1993–2005 2006–2018

AF-% BF-% AF-% BF-% AF-% BF-%

CAPM 22.90 34.83 27.91 38.54 22.16 33.98

FF-3 24.16 36.46 1.23 1.90 90.05 93.24

Carhart-4 8.67 11.76 0.81 1.23 86.87 91.09

BAB 5.09 6.78 1.99 3.61 5.97 7.00

FF-5 8.56 11.31 6.69 11.01 8.71 10.94

HXZ q 3.55 4.49 0.85 1.33 9.83 13.09

BS-6 2.52 3.55 0.62 1.00 13.21 19.30

HMXZ q5 0.06 0.06 0.05 0.09 0.04 0.08
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Table V: Confidence Intervals of Population and Conditional Distribution of Out-
of-sample Sharpe Ratios of Various Asset Pricing Models

Using h months of factor return data ending at 2018/12, we obtain the in-sample Sharpe ratios
(θ̂) as well as the 95% confidence interval (θL, θU ) of the population Sharpe ratios for various
asset pricing models. With the population Sharpe ratio set to θL or θU , we further obtain the
10th, 50th, and 90th percentiles of the distribution of the out-of-sample Sharpe ratios based on
the conditional distribution, F (θ̃|θ̂). Panels A, B, and C present results for h = 60, 120, and 240
months, respectively.

A. h = 60

F−1(θ̃|θ̂) F−1(θ̃|θ̂)
Model θ̂ θL 10th-% 50th-% 90th-% θU 10th-% 50th-% 90th-%

CAPM 0.201 0.000 0.454

FF-3 0.249 0.000 0.000 0.000 0.000 0.448 0.280 0.397 0.441

Carhart-4 0.271 0.000 0.000 0.000 0.000 0.445 0.242 0.367 0.426

BAB 0.555 0.248 0.197 0.240 0.248 0.803 0.746 0.793 0.803

FF-5 0.271 0.000 0.000 0.000 0.000 0.413 0.175 0.308 0.379

HXZ q 0.336 0.000 0.000 0.000 0.000 0.523 0.350 0.457 0.507

BS-6 0.345 0.000 0.000 0.000 0.000 0.482 0.249 0.370 0.440

HMXZ q5 0.567 0.153 0.036 0.101 0.136 0.762 0.607 0.694 0.741
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Table V: Confidence Intervals of Population and Conditional Distribution of Out-
of-sample Sharpe Ratios of Various Asset Pricing Models (Cont’d)

B. h = 120

F−1(θ̃|θ̂) F−1(θ̃|θ̂)
Model θ̂ θL 10th-% 50th-% 90th-% θU 10th-% 50th-% 90th-%

CAPM 0.275 0.091 0.455

FF-3 0.326 0.089 0.027 0.070 0.086 0.484 0.417 0.464 0.481

Carhart-4 0.327 0.048 −0.011 0.023 0.042 0.472 0.383 0.438 0.464

BAB 0.554 0.347 0.321 0.342 0.347 0.734 0.706 0.730 0.734

FF-5 0.374 0.095 0.017 0.061 0.084 0.513 0.414 0.470 0.499

HXZ q 0.302 0.000 0.000 0.000 0.000 0.445 0.351 0.409 0.436

BS-6 0.333 0.000 0.000 0.000 0.000 0.454 0.329 0.394 0.432

HMXZ q5 0.493 0.243 0.169 0.211 0.233 0.642 0.558 0.606 0.630

C. h = 240

F−1(θ̃|θ̂) F−1(θ̃|θ̂)
Model θ̂ θL 10th-% 50th-% 90th-% θU 10th-% 50th-% 90th-%

CAPM 0.103 0.000 0.229

FF-3 0.141 0.000 0.000 0.000 0.000 0.244 0.174 0.223 0.241

Carhart-4 0.174 0.000 0.000 0.000 0.000 0.271 0.195 0.242 0.263

BAB 0.243 0.100 0.074 0.096 0.100 0.363 0.338 0.359 0.363

FF-5 0.327 0.157 0.106 0.135 0.150 0.431 0.377 0.408 0.424

HXZ q 0.274 0.106 0.059 0.088 0.102 0.381 0.330 0.362 0.376

BS-6 0.295 0.103 0.043 0.074 0.092 0.389 0.319 0.356 0.377

HMXZ q5 0.469 0.308 0.268 0.291 0.302 0.581 0.538 0.562 0.575

59



Table VI: Posterior Predictive Mean and Standard Deviation of Out-of-sample
Sharpe Ratios of Various Asset Pricing Models

Using h months of factor return data ending at 2018/12, we obtain the in-sample Sharpe ratios
(θ̂) for various asset pricing models. Under the assumption that the prior distribution of θ is
θ ∼ 0.6 × Beta(2, β) with β = 6, 4, and 2, we obtain the posterior predictive mean and standard
deviation of θ̃. Panels A, B, and C present results for h = 60, 120, and 240 months, respectively.

A. h = 60

β = 6 β = 4 β = 2

Model θ̂ E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂]
CAPM 0.201 0.159 0.076 0.192 0.086 0.241 0.098

FF-3 0.249 0.080 0.084 0.109 0.098 0.155 0.116

Carhart-4 0.271 0.067 0.077 0.093 0.092 0.136 0.111

BAB 0.555 0.253 0.094 0.313 0.096 0.396 0.096

FF-5 0.271 0.053 0.070 0.074 0.083 0.110 0.103

HXZ q 0.336 0.090 0.085 0.125 0.099 0.183 0.118

BS-6 0.345 0.061 0.071 0.087 0.086 0.132 0.107

HMXZ q5 0.567 0.160 0.099 0.220 0.108 0.308 0.113
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Table VI: Posterior Predictive Mean and Standard Deviation of Out-of-sample
Sharpe Ratios of Various Asset Pricing Models (Cont’d)

B. h = 120

β = 6 β = 4 β = 2

Model θ̂ E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂]
CAPM 0.275 0.209 0.072 0.240 0.077 0.280 0.082

FF-3 0.326 0.182 0.082 0.218 0.086 0.265 0.092

Carhart-4 0.327 0.156 0.083 0.192 0.089 0.238 0.094

BAB 0.554 0.344 0.070 0.389 0.071 0.450 0.070

FF-5 0.374 0.168 0.085 0.208 0.090 0.259 0.095

HXZ q 0.302 0.138 0.082 0.171 0.088 0.214 0.094

BS-6 0.333 0.117 0.080 0.150 0.088 0.194 0.096

HMXZ q5 0.493 0.254 0.083 0.300 0.084 0.362 0.086

C. h = 240

β = 6 β = 4 β = 2

Model θ̂ E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂] E[θ̃|θ̂] Std[θ̃|θ̂]
CAPM 0.103 0.111 0.049 0.122 0.051 0.134 0.054

FF-3 0.141 0.081 0.058 0.093 0.061 0.107 0.064

Carhart-4 0.174 0.089 0.060 0.104 0.063 0.120 0.066

BAB 0.243 0.190 0.061 0.209 0.062 0.230 0.064

FF-5 0.327 0.217 0.065 0.241 0.066 0.268 0.068

HXZ q 0.274 0.183 0.065 0.204 0.066 0.228 0.068

BS-6 0.295 0.170 0.067 0.193 0.069 0.218 0.071

HMXZ q5 0.469 0.333 0.059 0.363 0.060 0.403 0.063
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