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Abstract

We study the role of European Immigration on local and aggregate economic growth in

the United States between 1880 and 1920. We employ a big data approach and link, at

the individual-level, information from the Population Census, the universe of patents

and millions of historical immigration records. We find that immigrants were more

prolific innovators than natives, and document large differences in innovation potential

across nationalities and regions in the United States. To measure the importance of

immigrants for the creation of new ideas and economic growth, we develop a new spatial

model of growth through dissemination of knowledge and workers’ mobility. The model

allows us to use our micro and regional empirical findings to measure immigrants’

innovation human capital and the degree of knowledge diffusion which regulates scale

effects. We quantitatively analyze the effects of imposing major immigration restrictions

on American economic growth in the 19th and early 20th century. We find large,

accumulating, losses from these restrictions. Both the scale effects and the exclusion of

high-human capital immigrants contribute significantly to these losses.
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1 Introduction

The transformation of the US economy in the last two hundred years has been remarkable.

While being primarily rural at the beginning of the 19th century, the US had developed

into an essentially industrial nation when the century came to an end. More strikingly,

after lagging behind the technological frontier (represented by the UK) for most of the 19th

century, the US entered the twentieth century as the global technology leader and the richest

nation on the globe (Gordon, 2017). During this period, which is also referred to as the

‘‘The Second Industrial Revolution’’, the US economy also experienced a massive inflow of

immigrants, mostly from the European continent. This begs the question to what extent

such inflows were an important driver of productivity growth in the US.

To answer this question, we undertake a big-data approach and construct a novel micro-

data set on immigrants’ patent behavior. First, we match the population of US patents to

the restricted-use complete count US Federal demographic decennial censuses from 1880-1930

using modern record-linking techniques. Second, we exploit the original immigration records

and historical passenger lists from the ships heading from Europe to the US, which contain

direct microdata on immigrants’ pre-migration occupations.1 Doing so allows us to measure

the extent to which skills were indeed geographically portable, i.e. whether immigrants in

particular occupations were able to capitalize on such knowledge and generate more patents

in the US after their arrival.

These data allow us to precisely measure the main theoretical mechanisms through which

such international population inflows could have increased productivity in the US. First,

virtually all models of economic growth feature ‘‘scale effects’’, whereby either the level

or the growth rate of productivity is increasing in the size of the population. Second, the

inflowing immigrants could have played an important role in the process of technological

growth through their human capital, whereby Italian textile workers and German craftsmen

bring their knowledge of weaving techniques and carpenter skills to the American shore.

We analyze this wealth of data and measure the importance of scale effects and immigrant

human capital through the lens of a parsimonious general equilibrium model of innovation.

At the heart of the model is the local supply of innovative human capital to generate new

varieties. Individuals can either work as production workers or become entrepreneurs by

inventing a new product. While goods are tradable, labor markets are local, i.e. workers

1The immigration database of 13 million immigrants and the passenger lists of around 5 million immi-
grants leaving for the US via the German port Hamburg, the so-called ‘‘Hamburg Passenger Lists’’ were
provided to us for research purposes by the Battery Conservancy and the Archives of the city of Hamburg,
respectively. See http://www.castlegarden.org and http://www.germanroots.com/hamburg.html for
additional information. To the best of our knowledge, these data sources haveyet to be used in empirical
research.
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produce using the technologies brought about by local entrepreneurs. Hence, the size (i.e.

scale) and the composition (i.e. human capital) of the local population determine local

productivity at each point in time. In that sense, our theory combines the classical idea-based

growth model in the spirit of Romer (1990) and a modern model of economic geography,

where the spatial distribution of the population determines aggregate economic activity.

This combination of our spatial-growth setup with rich micro and regional data allows us

to estimate both the scale effect and the human capital of different immigrant groups and

separate them from differences in innovation potential between cities and rural areas.

To do so, we proceed in two steps. We first use the variation across individuals within local

labor markets to estimate differences in human capital between natives and immigrants of

different nationalities. In particular, we show that our theory implies a log linear relationship

between patent probabilities and innovation human capital and that we can estimate the

human capital of different groups from our matched microdata. We then use the panel

dimension of our data across regions to estimate both the strength of scale effects and regional

heterogeneity in patent creation. We again exploit the fact that our theory generates a

closed-form expression for the law-of-motion of regional patenting, which allows us to estimate

these structural parameters directly from the data.

Our empirical results imply that immigrants were an important contributor to US growth

between 1880 and 1920. At the micro-level we document that (i) immigrants created - on

average - more patents than natives, (ii) that migrants were particularly prolific after being

in the US for at least ten years and (iii) that there are stark differences across nationalities

with German and British immigrants being far more innovative than Italian immigrants. We

also provide direct evidence that these patterns are plausibly due to differences in human

capital, the channel, which is at play in our theory. In particular, using the information

contained in the historical migration records, we show that immigrants with more innovative

pre-migration occupations are more likely to patent after their arrival in the US. We also

show that the patents issued by immigrants were qualitatively different from the ones from

their native peers in that they show less similarity (as measured from the words in the

patent description) to patents issued in the same location in the past. Both of these results

are consistent with the idea that immigrants were able to capitalize on their pre-migration

knowledge to generate innovations in the US.

At the regional level, the model delivers a structural regression equation to link regional

patent growth to the size and composition of the local population, past patent activity,

and a county fixed effect.2 These determinants of regional innovation all have an intuitive

2Hence, our theory provides precise structural underpinnings to difference-in-difference approaches sug-
gested in the literature (see Ottaviano et al. (2013), Sequeira et al. (2020); Burchardi et al. (2020)).
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structural interpretation. In particular, the effect of past patenting on future patent growth

is related to the importance of local knowledge spillovers and coincides with the strength

of scale effects and the county fixed effect represents systematic differences in the efficiency

of innovation across locations. Our estimates imply that scale effects are sizable and that

immigration improves the extent of spatial sorting because immigrants are more likely to live

in urban locations, which we estimate to have higher innovation efficiency.

We finally evaluate the importance of immigrants for the process of American Growth

between 1880 and 1920 by undertaking a quantitative assessment of the importance of

immigration restrictions. We parametrize our model using our empirical findings at the

micro and cross-regional level and then study the aggregate effects of immigration restrictions

at the federal level. We calibrate the model to the cross-sectional data of the native and

immigrant population in 1880 and then solve for the dynamic evolution of the economy

under different assumptions on immigration policy. Following Card (2001), we assume that

immigrants’ initial location choice is related to the existing share of immigrants of their

own nationality. This implies that the initial distribution of ancestry determines the spatial

exposure to aggregate immigration policy. To isolate the impact of immigrants we abstract

from other sources of population growth.

Our model allows us to study the aggregate and local consequences of such a policy. At

the aggregate level, we find that immigration restrictions have a significant, accumulating,

impact on economic growth. Quantitatively, our model implies that GDP per capita in 1920

would have been 30% lower if all immigration inflows had been completely shut down in 1880.

To isolate the importance of general scale effects versus the loss of foreign human capital,

we compare immigration restrictions on German and British immigrants relative to Italians.

Recall that we estimate the former to have much more innovative human capital than the

latter. We indeed find that restricting German and British immigration has more adverse

consequences. Without them, GDP pc would have been 10% lower in 1920. In contrast,

without Italian immigrants, the aggregate loss in income per capita would have been less

than 5%. More than half of this difference can be attributed to the loss of human capital

from high skill immigration origins.

Our model also highlights that the consequences of immigration policy at the aggregate

level are not homogeneous across space - both because different regions are differentially

exposed to immigration inflows and because spatial heterogeneity in innovation efficiency

induces spatial sorting by human capital. In our application, we for example find that

the geographic distribution of the economic gains attributable to German versus Italian

immigrants is vastly different.

Our paper contributes to the literature on growth, innovation human capital, and scale
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effects (see for example Jones (2005) and Akcigit (2017) for surveys). The combination

of individual-level information on immigrants’ patenting behavior and regional data on

county-level patent growth is helpful to distinguish regular scale effects from the possibility

of immigrants’ fostering idea flows, which feature prominently in recent theories of economic

growth (Kortum, 1997; Lucas Jr and Moll, 2014; Perla and Tonetti, 2014; Buera and Oberfield,

2020). Empirically, we estimate that scale effects are sizable and consistent with models of

semi-endogenous growth as proposed in Jones (1995).

Amidst the rising prominence of immigration flows, especially high-skill immigration,

for the world economy (Kerr et al. (2016); Kerr (2018)) there has been a growing interest

in estimating the economic effects of immigration. Traditionally, the economics literature

was concerned with the short-run consequences on labor outcomes of natives (see e.g. Card

(1990), (Burstein et al., 2020), Dustmann et al. (2016) of Peri (2016) for a survey). A set

of recent papers focuses (like we do) on the long-run impact. (Sequeira et al., 2020) and

Akcigit et al. (2017) document a large positive effect of immigration inflows in the 19th

century on economic activity and patent creation today. Hornung (2014) uses data on textile

plants to analyze the productivity effects of the Huguenot re-settlement for the 18th century.

Burchardi et al. (2020) find a positive effect of immigration inflows on patenting and local

growth in the last three decades. Our paper complements these studies both by analyzing

patenting behavior at the micro-level and by proposing a structural model, which allows us

to interpret and aggregate the empirical findings and perform counterfactual exercises.

We also contribute to a growing literature in spatial economics. Early contributions focus

on static models to characterize the spatial allocation of resources taking regional productivity

as given - see for example Allen and Arkolakis (2014) or the recent survey by (Redding and

Rossi-Hansberg, 2017). A growing set of papers models the evolution of regional productivity

explicitly (e.g. Desmet et al. (2018), Nagy (2020), Peters (2019), or Walsh (2019)). To the

best of our knowledge, ours is the first paper to connect a micro-founded model of spatial

growth with direct evidence on regional patenting at the individual level.

The rest of the paper is structured as follows. Section 2 presents the theory and its

main insights. Section 3 presents the data and the main facts about immigrants, their skills,

and patterns of innovation. Section 4 presents reduced form evidence based on a difference-

in-difference specification suggested by the model. Section 5 contains the counterfactual

exercises. Section 7 concludes.
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2 Theory

We consider an economy with R regions, denoted by r. Consumers have preferences over a

CES bundle of varieties indicated by ω

Ur =

(∫ N

ω=0

cr (ω)
σ−1
σ dω

) σ
σ−1

=

(
R∑
r=1

∫ Nr

ω=0

cr (ω)
σ−1
σ dω

) σ
σ−1

,

where Nr denotes the number of varieties being produced in region r, N =
∑

rNr denotes

the aggregate number of varieties available in the economy, and cr (ω) is the consumption of

variety ω in region r. Suppose there are {Ljr}r,j individuals of type j = 1, 2, 3..., Jr in region

r that can engage in innovation or work as workers. The type of individuals determines their

human capital endowment and ultimately if they will be workers or innovators, as we discuss

below.

Varieties are produced with constant returns to scale using only labor and firms compete

monopolistically competitive and trade is free. We consider the aggregate final good as a

numeraire and denote aggregate income by Υ =
∑

r Υr with Υr being the income in region r.

Standard arguments imply that profits of firm ω in region r are given by

πr (ω) = (pr (ω)− wr) y (ω) =
1

σ

(
σ

σ − 1

)1−σ

w1−σ
r Υ, (1)

where y (ω) is the quantity of good ω that is produced. Hence, profits are increasing in total

income Υ and decreasing in the local wage wr. Because profits are constant across producers

within a location r, we simply denote profits by πr.

2.1 Creation of Varieties

Varieties are created by individuals engaging in innovation. We therefore also sometimes refer

to varieties as ideas and to people who generate varieties as either innovators or entrepreneurs.

In our empirical application, we will connect varieties to patents.

Individuals can either start a new firm or work as production workers. Each individual

has one unit of time to work as a production worker. In contrast, starting a firm requires a

single unit of entrepreneurial human capital. The total return from having h units of human

capital and hence h varieties is therefore given by hπr, where πr is given in (1). Individuals

differ in their innovative abilities. In particular, suppose region r is inhabited by different

types j that draw their entrepreneurial human capital from a distribution h ∼ Hj
r (h). Note

that the distribution of innovative abilities differs across types and across space. Empirically,
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we will relate the different types to immigrants of different nationalities.

An individual, therefore, decides to create a new idea rather than work as a production

worker as long as hπr ≥ wr. This implies that there is a region-specific human capital cutoff

to enter entrepreneurship in region r, h∗r, which is given by

h∗r =
wr
πr

=
1

1
σ

(
σ
σ−1

)1−σ wσrΥ , (2)

where the second equality uses (1). Hence, high wage locations ‘‘toughen’’ the entrepreneurial

cutoff both because of higher opportunity costs and because of lower profits conditional on a

successful idea. In contrast, a larger market size Υ increases profits and hence induces worse

entrepreneurs to engage in idea creation.

2.2 Heterogeneity in Innovative Ability and Aggregate Innova-

tion

We assume that innovative ability, h, is drawn from a Pareto distribution

Hj
r (h) = 1−

(
ψjr
h

)θ
, (3)

where ψjr determines the average level of human capital of individuals of type j in region r.

We put more structure on ψjr below. In anticipation of the introduction of dynamics and

growth in Subsection 2.4 we note that it can be specified as a function of time or aggregate

variables. At this point, we simply note that some regions might be better suited to generate

ideas (ψjr > ψjr′) and different types could be of different innovative talent within a location

(ψjr > ψj
′
r ). Note also that the share of innovators of type j in region r is given by

ejr ≡
(
ψjr
h∗r

)θ
,

as everyone with h ≥ h∗r becomes an entrepreneur.

Given (3), the total number of varieties created in region r is given by

Nr =
∑
j

Ljr

∫ ∞
h∗r

hdHj
r (h) =

θ

θ − 1
h∗r
∑
j

Ljr

(
ψjr
h∗r

)θ
=

θ

θ − 1
h∗r
∑
j

Ljre
j
r. (4)

Hence, the number of active firms in region r is increasing in the size of the population Ljr,

increasing in the supply of human capital ψjr and decreasing in the entrepreneurial cutoff h∗r.
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Furthermore, the total labor payments are given by

wr
∑
j

LjrP (h ≤ h∗r) =

(
1− 1

σ

)
Nr

(
σ

σ − 1

)1−σ

w1−σ
r Υ.

Using equations (2), (4), letting $j
r = Ljr/Lr be the share of people of type j in region r, and

simplifying we can solve explicitly for the entrepreneurial human capital cutoff h∗r as

h∗r =

(
θσ − 1

θ − 1

)1/θ
(∑

j

$j
r

(
ψjr
)θ)1/θ

. (5)

The solution for h∗r is akin to a ‘‘CES-weighted average’’ of the population-weighted human

capital indices ψjr . Notice that if there is no heterogeneity in innovative ability, i.e. ψjr = ψr,

equation (5) implies that h∗r =
(
θσ−1
θ−1

)1/θ
ψr, i.e. the entry cutoff is always proportional to

the supply of human capital in region r, ψr.

This endogenous human capital cutoff h∗r will be a key statistic to tractably characterize

the equilibrium. Conveniently, it allows us to consider arbitrary heterogeneity across groups

j and, as we will show below, it will also yield a convenient way to estimate it. Considering

the average innovation share in each region r,

er ≡
∑
j

$j
re
j
r =

θ − 1

θσ − 1
, (6)

we see that is constant and independent of the supply of human capital ψjr or the size of the

population Ljr. It does, however, depend on the elasticity of substitution σ and the tail of

the skill distribution, θ: if products are more substitutable, profit margins decline and less

resources are allocated to the creation of ideas. Similarly, the lower θ, i.e. fatter the tail

of the talent distribution, the lower the share of entrepreneurs: if superstar entrepreneurs

generate many ideas, the entrepreneurial market becomes more competitive and one can

economizes on entrepreneurs.

Despite the fact that the share of entrepreneurs is constant across space the number of

varieties may differ across locations. Using the variety creation schedule (4) and equation (6)

yields

Nr =
θ

θ − 1
h∗rLr

∑
j

$j
r

(
ψjr
h∗r

)θ
=

θ

θσ − 1
h∗rLr. (7)

Hence, the number of ideas created in region r is a function both of the size of the population Lr

and the entrepreneurial cutoff h∗r. Given that the cutoff is increasing the level of human capital
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ψjr, innovative locations do not have more entrepreneurs - they have better entrepreneurs

and hence generate more ideas in equilibrium. Importantly, given that h∗ is fully determined

from the composition of the local population $j
r and that the distribution of human capital

ψjr , (7) allows to compute the number of local varieties Nr independently of other equilibrium

variables like the regional distribution of wages wr.

2.3 Equilibrium

To calculate aggregate income in region r, recall that income stems from two sources: labor

income and entrepreneurial profits. The Pareto distribution implies that total income of

group j in region r is given by

wrL
j
rP (h ≤ h∗r) + Ljr

∫ ∞
h∗r

hπrdH
j
r (h) = Ljr

[
1 +

1

θ − 1

(
ψjr
h∗r

)θ]
wr. (8)

Income is naturally increasing in the regional wage wr and - holding the wage wr constant -

increasing in the share of entrepreneurs ejr = (ψjr/h
∗
r)
θ
, because all infra-marginal entrepreneurs

with h > h∗r earn a rent relative to production workers. Note also that (6) implies that

regional income Υr is given by

Υr =
∑
j

Ljr

[
1 +

1

θ − 1

(
ψjr
h∗r

)θ]
wr =

θσ

θσ − 1
Lrwr, (9)

i.e. per capita-income is simply proportional to the wage.

To characterize the equilibrium we also need to consider the demand side. Sales per

variety are given by

xr (ω) ≡ σπr (ω) dω =

(
σ

σ − 1

)1−σ

w1−σ
r Υ.

Notice that we have considered a simple case where varieties are freely traded across regions.

The model can be easily extended to incorporate trade frictions following a voluminous

literature in the trade and geography gravity literature (see e.g. Arkolakis et al. (2012); Head

and Mayer (2013); Allen and Arkolakis (2014); Donaldson and Hornbeck (2016)) which will

simply change the functional form for firm sales per variety. We proceed with this extension

in our quantitative application.
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Market clearing therefore requires that income equals demand and thus

Υr = wr
∑
j

Ljr

[
1 +

1

θ − 1

(
ψjr
h∗r

)θ]
=

∫ Nr

0

xr (ω) dω. (10)

To summarize, given the solution for the entrepreneurial cutoffs {h∗r}r from (6), the

equation solving for varieties (4), and the market clearing condition, equation (10), we can

solve for the distribution of wages {wr}r across locations.

In the case with no trade frictions equations (6) and (7) imply that regional wages are

given by

wσr =
Nr

Lr

(
θσ − 1

θσ

)(
σ

σ − 1

)1−σ

Υ = h∗r
1

σ

(
σ

σ − 1

)1−σ

Υ. (11)

Hence, regional wages are increasing in the number of productive ideas per person, Nr/Lr,

which in equilibrium is proportional to the entrepreneurial cutoff h∗r and hence determined

by the supply of human capital {ψjr}j. In particular, using (9), (11) determines {wr} as a

function of Lr and h∗r. (11) has the important implication that the cross-sectional variation

in wages is only determined from the innovation cutoff h∗r

wr
wm

=

(
h∗r
h∗m

)1/σ

.

Hence, relative wages do not depend on regional scale Lr, but solely on the composition of

the population and their human capital endowments ψjr .
3

2.4 Dynamics and Growth in Space

We now put more structure on the determinants of regional human capital ψjr and incorporate

dynamics into our spatial framework. We henceforth use the subindex t to denote the time

period of each variable considered. We assume that regional human capital is a function of

type-specific and region-specific fixed effects, and following a tradition in the growth literature

3Note that our model does feature scale effects in the aggregate. Using (11) and (9) yields

wσr = h∗r

(
σ

σ − 1

)1−σ
θ

θσ − 1

∑
r

Lrwr.

Given that h∗r is independent of Lr, an increase in the population by 1% increases wages in all locations
by 1

σ−1%. These are the usual variety gains of Krugman (1980) and Romer (1990), which operate at the
aggregate level, not regional level.
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(e.g. Romer (1990)) also consider a growth externality,

ψjrt = ζr︸︷︷︸
Location FE

ϕj︸︷︷︸
Type heterogeneity

Nϑ
rt−1︸ ︷︷ ︸

Local accumulation

. (12)

Here, ζr is a county fixed effect, which captures regional differences in the creation of human

capital across space. Hence, a given unit of human capital might be more productive in for

example urban locations relative to the countryside. The parameter ϕj governs differences in

human capital endowments across types j. In our application, heterogeneity in innovative

ability between natives and immigrants or between immigrants of different nationality will be

captured by ϕj. Finally, the term Nϑ
rt−1 captures the extent to which existing local varieties

are an input into the production of new entrepreneurial human capital. This is the usual

inter-temporal spillover generating long-term growth in idea-based models of growth (Jones,

2005). The parameter ϑ governs the strength of such spillovers.

The combination of h∗rt being akin to a CES average of human capital endowments (see

(5)) and the log-additive nature of regional human capital ψjrt in (12) implies that we can

derive a simple dynamic law of motion for the innovation threshold in region r time t, h∗rt:

h∗rt =

(
θσ − 1

θ − 1

)1/θ
(∑

j

$j
rt

(
ψjrt
)θ)1/θ

= %

(∑
j

$j
rt

(
ϕj
)θ)1/θ

ζr
(
h∗rt−1

)ϑ
Lϑrt−1, (13)

where % ≡
(
θσ−1
θ−1

)1/θ ( θ
θσ−1

)ϑ
is a collection of inconsequential constants. Here we used (7) to

substitute for Nrt−1.

Equation (13) fully characterizes the dynamic path for {hrt}t given an initial condition

hr0 and a sequence of population levels
{
Ljrt
}
t

as these also determine the composition of the

local workforce
{
$j
rt

}
t
. In particular, it implies that

lnh∗rt = ς + ln ζr + ϑ lnh∗rt−1 + ϑ lnLrt−1 + ln

[∑
j

$j
rt

(
ϕj
)θ]

. (14)

Hence, ln h∗rt follows an AR(1) process with persistence ϑ. In addition there is a regional drift

ζr brought about through local human capital creation, a positive effect on today’s human

capital though the size of the past population Lrt−1, which positively affects human capital

though the creation of non-rival ideas and the composition of human capital.

Equation (12) highlights the three main determinants of the supply of local human capital:

regional innovation efficiency {ζr}r, individual innovation efficiency {ϕj}j and the strength

of knowledge spillovers ϑ. Below we show that we can directly estimate all of these objects
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using a combination of micro-data and spatial variation. In particular, we show that we can

turn (14) into an estimation equation that allows us to recover ϑ and {ζr} from regional

variation in patent activity. We also show how we can identify human capital differences

from our micro data on patenting. The key property that allows us to do so is that the

endogenous cutoff h∗r is akin to a CES aggregator of the human capital of the different types

presenting in location r - see equation (5). This CES-structure and the our assumptions on

human capital ψjr in (12) imply that the entrepreneurial share of any group of individuals G
within a region r is given by

eGr =

∑
j∈G L

j
r

(
ψjr
h∗r

)θ
∑

j∈G L
j
r

=
∑
j∈G

$jG
r

(
ψjr
h∗r

)θ
=

θ − 1

θσ − 1

∑
j∈G $

jG
r (ψjr)

θ∑
j $

j
r

(
ψjr
)θ = er

∑
j∈G $

jG
r ϕ

θ
j∑

j $
j
rϕθj

where $jG
r = Ljr/

∑
j∈G L

j
r denotes the share of j types within group G and er = θ−1

θσ−1 is the

innovator share in region r. Hence, the share of innovators within a group relative to its

regional average, eGr /er, reflects exactly the population-weighted average of human capital

within the group, relative to regional average. This relationship allows us to estimate the

innovation human capital of different types of immigrants from their patenting behavior.

2.5 The Effects of Immigration Inflows

How does an inflow of immigrants into a location change innovation and economic activity?

Equation (14) highlights that immigrants play two distinct roles in the determination of h∗rt

and hence wages and income per capita:

1. Immigrants affect local human capital provision
[∑

j $
j
rt (ϕj)

θ
]1/θ

. If immigrants are

endowed with more (less) innovative human capital than natives, a higher share of

immigrants increases (lowers) h∗rt holding h∗rt−1 and Lrt−1 fixed. We refer to this channel

as the local human capital supply channel.

2. The second is the size effect embedded in Lrt−1. Holding h∗rt constant, a larger population

increases the number of regional varieties Nrt, which in turn leads to higher future

innovation cutoff hrt+1. We refer to this channel as the local scale channel.

To illustrate these effects more clearly, suppose there are two groups - immigrants and

natives - and let their human capital parameters be ϕI (for immigrants) and ϕN (for natives).

Suppose that ϕN = 1 so that ϕI denotes immigrants’ innovative potential relative to natives.
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If the share of immigrants is small, i.e. $I
rt ≈ 0, then

ln

[∑
j

$j
rt

(
ϕj
)θ]

= ln
[(

1−$I
rt

) (
ϕN
)θ

+$I
rt

(
ϕI
)θ] ≈ [(ϕI)θ − 1

]
$I
rt.

Now consider the following experiment: consider a location that contains only a measure of

L natives. At t0, the economy experiences an inflow of immigrants, which increases the share

of immigrants to $I . Hence, the local population also increases by $I . The immigration

shock is permanent. Equation (14) then implies that for k ≥ 0, this permanent inflow at time

t0 changes the human capital cutoff at time t0 + k in the following way:

d lnh∗rt0+k
d$I

=
((
ϕI
)θ − 1

) k∑
i=0

ϑi︸ ︷︷ ︸
Human capital supply

+
k∑
i=1

ϑi︸ ︷︷ ︸
Local scale

=
(
ϕI
)θ k∑

i=0

ϑi − 1. (15)

Recall that regional income per capita is proportional to h∗rt so that (15) also describes

the dynamic evolution of income per capita. Equation (15) highlights three aspects: First,

through the human capital supply channel, immigrant inflows can be positive or negative.

If ϕI < 1, i.e. immigrants are less innovative than natives, immigrant inflows water down

the average human capital pool and local wages decline as per capita idea creation falls. If

immigrants are more innovative, ϕI > 1, the opposite is the case. Second, the aggregate

effect of immigrant inflows depend crucially on the parameter ϑ. If ϑ > 0, ideas are non-rival

in the creation of new knowledge: everyone’s human capital in region r benefits from the

ideas invented in the past. In that case, the effect of immigration is cumulative. Third, the

local scale effect is only active if ϑ > 0 and is always positive: natives and migrants like

benefit from the larger population if they can build on their shoulders. Note that the effect

of immigration inflows is weakly increasing over time and that

lim
k→∞

d lnh∗rt0+k
d$I

=

(
ϕI
)θ

1− ϑ
− 1 =

ϑ−
(

1−
(
ϕI
)θ)

1− ϑ
.

Hence, the effect of immigration is a horserace between two forces: the dynamic growth

externality captured in ϑ and natives’ human capital relative to immigrants 1−
(
ϕI
)θ

. If the

former is smaller than the latter, immigrant inflows will reduce income per capita both in the

short- and the long-run.

In Figure 1 we display the impulse response function in (15) graphically. We consider

three cases. In the first case, depicted in solid blue, immigrants are as innovative as natives

(i.e. ϕI = 1) and past ideas aide in creating new ideas (ϑ > 0). The short-run effect of an
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t0
Time

Inflow of 
immigrants

  and  φI = 1 ϑ > 0

  and  φI < 1 ϑ = 0

  and  φI < 1 ϑ > 0

  φθ
I − 1

 ϑ/(1 − ϑ)

 
ϑ − (1 − φθ

I )
1 − ϑ

  0

Notes: The figure shows the impulse response function in (15). The immigration shock is permanent and
occurs at t0. We depict three cases, which differ in the innovative human capital of immigrants

(
ϕI
)
and the

size of the inter-temporal spillover (ϑ).

Figure 1: The Dynamic Impact of Immigrations

immigrant shock is zero as immigrants leave the region’s human capital stock unchanged.

The long-run effect is positive because both natives and immigrants build on the non-rival

ideas created in the past. The second case, depicted in red, is an example of a shock where

immigrants are less skilled than natives and there is no inter-temporal spillover, i.e. ϑ = 0.

In that case, immigrants reduce regional income per capita permanently, as they reduce

average human capital and hence idea creation. The third case, depicted in orange, is akin

to the second case, i.e. immigrants are less innovative than natives. However, now ideas

are a sufficiently strong factor of idea production, i.e. ϑ > 1−
(
ϕI
)θ

. As seen in Figure 1,

now the effect of immigrants is ambiguous. In the short-run the negative effect through their

lower human capital dominates and income per capita decline. In the long-run, the dynamic

accumulation of ideas where natives’ and immigrants’ human capital builds on past ideas

dominates and the long-run effect is positive.

In the remainder of the paper we explore these implications empirically. In Section 3

we use detailed matched microdata of immigrants and their patent behavior to measure

immigrants’ relative human capital. In Section 5 we use regional variation to estimate the

knowledge spillover elasticity ϑ and the spatial heterogeneity in innovation efficiency. Finally,

in Section 6 we use our model and these estimates to quantify the role of immigrants for

regional and aggregate growth. To do so, we extend the framework by a number of realistic
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Notes: The figure show the number of patents issued each year between 1870 and 1920 (left panel) and the
number of immigrants arriving in the US and the stock of the foreign-born population (right panel).

Figure 2: Patenting and Immigration Inflows: 1880 and 1920

features, in particular trade costs, and internal migration.

3 Empirical Analysis

Guided by our theoretical analysis in Section 2 we now turn to the empirical analysis. We

focus on the time period between 1880 and 1920. These four decades, a period often cited as

the main part of the era of mass migration (see e.g. Abramitzky and Boustan (2017)), saw a

rapid increase in innovative activity and immigrant inflows. Figure 2 shows the aggregate

time-series of patent creation (left panel) and immigration inflows (right panel). The number

of issued patents rose from roughly 10,000 patents in 1870 to almost 40,000 prior to the

First World War. At the same time, the U.S. saw a steady inflow of immigrants. In the

period between 1870 and 1900, roughly 400,000 individuals arrived per year. Between 1900

and 1914, this number rose to almost 1 million. Consequently, the number of foreign-born

increased from around 6 million people in 1870 to almost 14 million in 1910.

3.1 Data

To conduct our analysis we build a new database on the patent activity at the individual

level. We construct our database by linking three datasets: (i) the IPUMS Complete Count

U.S. Federal Demographic Census, (ii) the population of patents issued in the U.S., and (iii)

novel data on immigrants’ pre-migration characteristics from historical immigration records.

We describe the data construction in detail in Section A in the Appendix. For the census,

we use the restricted-access complete count version of IPUMS (Ruggles et al. (2020)) which
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Figure 3: The Historical Immigration Records

has detailed information for the population of individuals residing in the U.S. We specifically

use the information on age, occupation, employment status, immigration status and current

location of residence. For patent activity, we rely on the publicly available information from

the United States Patent and Trademark Office (USPTO), which reports for each patent

issued in the U.S. information on the assignee, location, and description of it.

Finally, we rely on two primary sources for our historical immigration records: the Castle

Garden Immigration Database and the Hamburg Passenger Lists. The Castle Garden data,

compiled by the Battery Conservancy, contains the list of all immigrants entering the US via

the port of New York between 1820 to 1914. In total, the database comprises approximately 11

million individual micro-records. The Hamburg Passenger Lists records all passengers leaving

from the port of Hamburg to the US between 1850 and 1914 and comprises approximately

6 million records.4 Importantly, both datasets contain detailed information on immigrants

pre-migration occupations. We will use this information to measure immigrants’ innovative

skills (see Section 3.3 below).

In Figure 3 we show the sample size of the Castle Garden Data (left panel) and Hamburg

Passenger Lists (right panel) by decade. Figure 3 shows that these two databases complement

each other well. The Castle Garden Data tends to oversample immigrants in the early part

of our sample, while the Hamburg Passenger Lists cover more immigrants after 1890.

4We have access to the complete records through a cooperation with the Hamburg State Archive.
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3.2 Constructing the Database: Record Linking

We construct our database by linking patents and historical immigration records to individuals

in the population census. Our analysis focuses entirely on males as the majority of patent

holders were males between 1880 and 1920. To perform the record linking, we use the fact that

the patent records report the name and location (typically, county and state) of the patent

assignee and that the immigration records report the name, age and arrival (or departure)

year in the U.S. We use this information to match these datasets to the Population Census.

We conduct our record linking using a machine-learning-based random forest classifier.

While we discuss the details of the matching procedure in more detail in the Appendix Section

B, intuitively, we search for individuals with similar first and last name and location (to

match patents to the Census) and similar first and last name, age and arrival/departure

year (to match historical immigration records to the Census). As our measure of ‘‘distance’’

between names, we rely on the so-called Jaro-Winkler distance, to measure the distance

between two strings (in our context, first and last names). The Jaro-Winkler distance, which

is a number between 0 and 1 with 1 denoting a perfect match, is an ‘edit distance’ — it

counts how many operations are required to transform one string into another string. We

consider a particular ‘‘patent-census’’ or ‘‘immigration record-census’’ combination a match,

if it has the highest Jaro-Winkler score, provided its Jaro-Winkler score exceeds 0.85, and the

observations are in the same geographical location and share the same age and arrival year.

As an example, consider Figure 4 where we display the distribution of the Jaro-Winkler

similarity scores for all individuals from the Hamburg Passenger List that we matched to the

US Census. In the left panel, we display the distributions for the last names, in the right

panel for the first names. Figure 4 shows that for both last and first names, the distribution

shows a sizable spike at 1, which refers to a value where the strings align perfectly. Besides,

we find relatively higher scores for first names than for last names, reflecting the fact that the

latter show more variation than the former and that slight variation in spelling is more likely.

To get a linguistic sense of what these distances mean, consider the following example.

In the Hamburger Passenger Lists, we find ‘‘Christian Friedrichsen’’. The closest match

in the US Census is an individual with the same age whose name is reported as ‘‘Christ

Frederickson’’. The Jaro-Winkler Distance between the first names is equal to 0.95, the

distance between the last names is 0.83, Hence, it does not pass our ‘‘threshold’’ of having a

Jaro-Winkler distance of at least 0.85 for both names and we will not consider it as a match.

In contrast, for the passenger ‘‘Ernest Wodrich’’ we find ‘‘Earnest Woodrich’’ with the same

age and nationality in the sample. The Jaro-Winkler distance is about 0.95 for both the first

and the last name and hence we consider it as a match. Finally, ‘‘Morris Brettschneider’’

and ‘‘Morris Brettsschneider’’ is an example of an almost perfect match — the extra ‘‘s’’ in
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Figure 4: Distribution of Jaro-Winkler Distances

the Census implies that the Jaro-Winkler distance for the last name is equal to 0.99.

For the remainder, we take this full sample of matches as our baseline sample. However,

we also consider various robustness checks where we apply more conservative criteria such as

imposing Jaro-Winkler similarity measure of unity (i.e. being a ‘‘perfect’’ match).

Matching historical immigration records to the US Census In Table 1 we report

a set of summary statistics for the matching rates of the historical immigration records to

the US Population Census. In the first two rows, we report the total number of people who

are foreign-born as measured in the US Census. In the second row, we report the number

of ‘‘recent’’ immigrants, which we define as individuals that entered the U.S. within the

last 10 years. Note that this information is only contained in the US Census starting in

1900. In rows 3 and 4, we report the number of records we were able to match the historical

immigration records from Castle Garden and the Hamburg Passenger Lists respectively. We

match roughly between 500,000 and 800,000 individuals per decade. Finally, the last row

reports the number of people we can match to both the Hamburg Passenger Lists and Castle

Garden. Hence, in total, we arrive at a dataset, which covers the episode of four decades

and where we can link more than 3 million immigrants to their immigration records and

hence information on their occupations before migrating. This number compares to about

7.5 million census observations of recent immigrants and 25 million records of foreign-born

individuals across these years.

In Table 2 we provide some summary statistics of the population of recent immigrants in

the census and the subset of such immigrants were able to match.5 Compared to the native

5See also Section E.1 in the Appendix, where we provide a more comprehensive analysis of the quality of

17



1880 1900 1910 1920 Total

Number of Obs in Census
Foreign born 3,464,945 5,742,188 7,876,248 7,738,920 24,822,300

Recent immigrants 1,722,249 3,516,881 2,235,612 7,474,742

Number of people matched from:
Castle Garden 720,918 580,142 598,789 441,803 2,341,652

Hamburg Passenger Lists 87,860 198,898 318,014 284,414 889,186

HPL & Castle Garden 38,418 52,930 60,401 57,362 209,111

Notes: The table reports the number of foreign born and recent immigrants, i.e. immigrants that arrived
within the last ten years as measured from the population census. It also reports the number of matched to
the Castle Garden Data, the Hamburg Passenger List and both.

Table 1: Historical Immigration Records: Number of Matches

population, recent immigrants to the U.S. are highly urbanized (two-thirds live in cities) and

are more likely to be in the first part of their working life, i.e. between 20 and 40 years old.

In the remaining columns, we report the same statistics for our matched data. In terms of

the urbanization rate, the age distribution and the sectoral employment shares our matched

sample looks reassuringly similar. In terms of the nationality distribution, our matched

sample is naturally different. Among individuals matched to the Hamburg Passenger Lists,

two-thirds are German and no one is from Italy. This is expected because Italian immigrants

overwhelmingly left to the United States from Naples. In contrast, among our matches from

the Castle Garden Data, almost 40% are Italians. Note also that by construction both the

Castle Garden Data and the Hamburg Passenger List over-sample immigrants from Europe

relative to the population of immigrants.

The fact that we have a subset of individuals, that were matched both to the Hamburger

Passenger Lists and the Castle Garden Database allows us to devise an additional test for the

quality of matches. Note that the matching procedures were independent — no information

from the Hamburg Passenger Lists was used to match the Castle Garden Data and vice

versa. However, both report the port where the respective individual boarded. Given that

all individuals appearing in the Hamburg Passenger Lists, by construction, boarded ships in

Hamburg, we expect that the distribution of ports of individuals in the Castle Garden Data

who are also matched to the Hamburg Passenger List is biased towards ‘‘Hamburg’’ if our

algorithm indeed manages to correctly identify the same individual.

our matching procedure.
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Natives Recent Immigrants

Total Matched to

Castle Garden HPL

Number of observation 32,857,239 1,717,760 106,459 65,568

Urbanization rate 0.34 0.65 0.69 0.66

Age < 20 0.52 0.23 0.21 0.19

Age ≥ 20 and < 40 0.29 0.62 0.62 0.60

Age ≥ 40 and ≤ 70 0.17 0.14 0.16 0.20

German share 0.14 0.36 0.65

Italian share 0.12 0.41 0.00

British share 0.07 0.00 0.05

Notes: The table compares the characteristics of recent immigrants in the Census (column 1) to the
characteristics of immigrants that have been matched to Castle Garden (column 2) and the Hamburg
Passenger List (column 3). Recent immigrants are immigrants that arrived within the last decade.

Table 2: Characteristics of Recent Immigrants

This is exactly what we find. In Panel A of Table 3, we report the top five departure

ports of individuals in Castle Garden that are also matched to the Hamburg Passenger Lists.

Almost 50% of respondents also reported Hamburg (either directly or via transit in Le Havre

or Southampton) as their departure port in Castle Garden. This is very different in the

sample, where we did not manage to match the individual in the Census to the Hamburg

Passenger Lists. About 25% of respondents are Italians who left from Naples and Genoa

and Hamburg does not even appear as one of the top five departure ports. While we think

that Table 3 is encouraging for the match quality of our algorithm, we also want to note

that our matched data may include some false positives. In particular, we expect that

several individuals in Panel A, which report ‘‘Bremen’’ as their port of departure, are likely

incorrectly matched based on a similar German first and last name.

Matching patents to the US Census In Table 4 we summarize the matching rates of

patents for each decade. In the first row, we report the total number of patents issued in

the respective decade. Note that this number is simply the sum of the annual patent flows

displayed in Figure 2 for the respective decade. In the second and third row, we report

the number of such patents that we could match individuals in the census. Depending on
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Panel A: Panel B:

Castle Garden & Hamburg Passenger Lists Only Castle Garden

Port Freq. Percent Port Freq. Percent

Hamburg 2,657 22.77 Naples 86,905 20.79

Bremen 1,664 14.26 Le Havre 36,262 10.94

Hamburg & Southampton 1,528 13.09 Bremen 35,980 10.85

Hamburg & Havre 1,427 12.33 Bremen & Southampton 25,666 7.74

Bremen & Southampton 1,211 10.38 Genoa 23,642 7.13

Notes: In Panel A we report the top five departure ports reported in Castle Garden for the set of people,
which are matched to both the Caste Garden Data and the Hamburg Passenger Lists. Panel B reports the
same for the sample in the Castle Garden data which is not matched to the Hamburg Passenger Lists.

Table 3: Comparison of Departure Ports

Period 1860-1879 1880-1899 1900-1909 1910-1919

Total number of patents issued 196,307 416,153 304,654 381,131

Number of patents matched to Census 24,597 33,185 183,223 181,223

Share of patents matched 0.13 0.08 0.6 0.48

Table 4: Matching Rate for Patents

the year, we match between 15% and 56% of all patents. In Section C.3 in the Appendix,

we discuss the quality of our patent matching procedure in more detail. In particular, we

show that our match rates are very similar across industries, suggesting that our matching

algorithm is not systematically more successful in matching patents to inventors in specific

industries or specific regions.6

3.3 Pre-migration skills

As highlighted above, a unique feature of the historical immigration data (both CG and

HPL) is the enumeration of immigrants’ pre-migration occupations. As both databases

were provided to us simply as un-harmonized string variables, we construct a crosswalk to

6The matching rates in the later part of the sample are higher because the quality of the name scraping
out of the individual patent information improved in the later samples.
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the official occupational classification used by the US census. We do so using the lexical

database ‘‘Wordnet’’, which is part of the NLTK library in Python.7 Wordnet contains

a large network of synonyms, which are ordered hierarchically. This allows us to classify

immigrants’ pre-migration occupations to the US census system through shared synonyms.

See Section D.3 in the Appendix for details.

4 Immigrants and Patent Creation

Were immigrants an important source of idea creation? Figure 5 takes the first stab at

this question by displaying the extensive margin of patenting, i.e. the share of individuals

by their immigration status with at least one patent in the period between 1900 and 1909.

For immigrants, we distinguish between immigrants that arrived within the last ten years

(‘‘recent immigrants’’) and foreign-born individuals that lived in the US for more than ten

years (‘‘assimilated immigrants’’). The pattern is striking: assimilated immigrants are by far

the most prolific group of innovators.8 They are almost three times as likely as natives to

have a patent. In contrast, recent immigrants are much less likely to file a patent and hardly

differ from natives in their patenting behavior.9

In Figure 6 we look directly at the relationship between the innovativeness of immigrants

and the length of their stay in the US. There is a strong monotone positive relationship: the

longer immigrants stayed in the US, the more likely they are to file a patent. Presumably

this pattern reflects the gradual accumulation of complementary inputs to create new ideas

such as capital, language proficiency, input suppliers, or a customer base.

4.1 Estimating Innovation Human Capital

Our theory stresses the importance of innovation human capital, which we summarized by

the shifter of the type-specific skill distribution ψjrt. We now use our micro database on

individual patent behavior to estimate the different components of ψjrt.

To do so we assume that patenting (in the data) is related to the creation of varieties (in

7https://wordnet.princeton.edu
8In Section E.2 in the Appendix we show that the same pattern also holds true for the intensive margin of

patenting.
9A potential concern for the patterns depicted in Figure 5 could be that it might simply reflect a particular

bias in our matching procedure: maybe immigrants have more distinct names than the native population and
hence we simply achieve a higher match rate even though the actual innovation productivity might not differ.
In Section C.2 in the Appendix we discuss this in more in detail and provide direct evidence that this is
unlikely to be the case. We also think it is unlikely that the recognizability of names changes systematically
with the length of the stay in the US as would need to be the case to rationalize the pattern shown in Figure
6.
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Figure 5: Patent Activity by Natives and Immigrants

the theory). In particular, in terms of measurement, we assume that the observable number

of patents of individual i in region r, Pirt, is proportional to the number of created varieties

conditional on patenting, i.e.

Pirt =

0 if hi < h∗rt

κhi if hi ≥ h∗rt

, (16)

where κ > 0 is a constant of proportionality. Given the measurement equation in (16), our

theory allows us to measure the distribution of innovation human capital ϕj.

Our theory implies that the probability of patenting of individual i in region r, qrti =

P [Pirt ≥ 0], is given by

ln qirt = ln
(
ψjrt/h

∗
rt

)θ
= θ lnϕj + ln

(
ζrN

ϑ
rt−1/h

∗
rt

)θ
. (17)

Hence, we can use equation (17) to estimate the type specific human capital endowment

ϕj (up to scale). To do so, let Ijirt denote a dummy variable whether individual i is an

immigrant of type j. We consider an immigrant type as a combination of a nationality (e.g.

Germany, Italy) and — in the spirit of Figure 5— whether the immigrant arrived recently

(i.e. within the last 10 years) or is already assimilated. Hence, Ijirt takes the value 0 for

natives. Similarly, for an immigrant from Italy who arrived recently, we have IITA,Rirt = 1

(where the superscript ‘‘R’’ refers to ‘‘recent’’) and for an individual born in Germany that

lived in the US for more than 10 years we have IGER,Airt = 1 (where the superscript ‘‘A’’ refers
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Figure 6: Patent Activity and the Length of Stay in the US

to ‘‘assimilated’’). Using this notation, we run the regression

ln qirt = δrt +
∑
n

(
βnRIn,Rirt + βnAIn,Airt

)
+ x′irtγ + uirt, (18)

where δrt is a region-time fixed effect to control for the exogenous region-specific fixed effect

ζr and the endogenous statistics Nrt−1 and h∗rt and x′irt is a vector of individual observable

characteristics, which could predict innovative human capital ϕj. Our theory, in particular

equation (17), implies that the coefficient βnk is given by

βnk = θ ln
(
ϕnk/ϕN

)
, (19)

i.e. βnk reflects exactly the human capital of immigrants with nationality n and status k

relative to natives. We estimate (18) via logit.10

The results of this regression are contained in Table 5. The first column corresponds

to the regression version of Figure 5: immigrants have more human capital compared to

natives conditional on them being in the country for a sufficiently long time. In column 2,

we control for differences in spatial sorting by controlling for urbanization and the size of

the population. Doing so reduces both coefficients substantially as immigrants are much

more likely to reside in urban, densely populated areas. In terms of our theory, immigrants

tend to live in locations that are efficient to generate ideas (i.e. where ζr and Nrt−1 are

large relative to the entrepreneurial cutoff h∗rt) that these two observable variables capture a

10Strictly speaking, the logit model takes the form ln
(

qirt
1−qirt

)
= ln qirt − ln (1− qirt). Because qirt ≈ 0,

estimating (18) via logit will be a good approximation.
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(1) (2) (3) (4)
Recent immigrants -.112 -.56∗∗∗ -.603∗∗∗ -.627∗∗∗

(.0811) (.0545) (.059) (.0607)
Assimilated immigrants 1.2∗∗∗ .832∗∗∗ .772∗∗∗ .536∗∗∗

(.0548) (.0352) (.0388) (.0357)
Urban share 1.79∗∗∗

(.149)
(ln) Population .0191

(.0331)
German .455∗∗∗

(.0485)
Italian -.837∗∗∗

(.107)
English .633∗∗∗

(.0307)
Irish .109∗

(.06)
N 86,371,820 86,371,820 86,262,764 86,262,764
Year FE yes yes yes yes
SEA FE no no yes yes

Note: For immigration year 1900-1929. Standard errors are clustered by State Economic Area (SEA). ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Estimating Innovation Human Capital

sizable amount of this variation as seen in column 3 where controlling for county-year fixed

effects changes the coefficients relatively little.

In columns 4 and 5, we estimate differences in human capital by nationality. For

parsimony, we restrict the effect the length of time in the US to be constant across different

nationalities - we will come back to this distinction below. Consider first the heterogeneity of

human capital across nationalities. There is a clear pattern: English and German immigrants

have relatively high entrepreneurial human capital, Italian immigrants have less. Note

also that controlling for nationality cuts the coefficient for ‘‘assimilated immigrants’’ in

half: part of the superior patenting performance of assimilated immigrants is accounted

for by differences in the nationality composition because the first wave of immigrants was

concentrated among ‘‘innovative’’ nationalities like Germany and Britain and the big wave

of the Italian immigrants came later.

Quantitatively, equation (19) implies that the human capital of assimilated immigrants

exceeds the ones by natives by 1 log point (i.e. 170%) and the recent immigrants’ human

capital ϕθ is roughly 15% lower (see column 3). Similarly, column 4 implies that German

and English immigrants’ human capital exceeds that of natives by about 0.55 (≈ 0.8− 0.25)

or 1.5 (≈ 0.8 + 0.7) log points depending on whether they are assimilated or not. The

differences across immigrant nationalities are also sizable. Italian immigrants’ human capital
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Figure 7: Heterogeneity in Innovation Human Capital (ϕ)

is for example 1.5 log points below the ones of German or English immigrants holding the

assimilation status constant.

In Figure 7 we display the heterogeneity in innovation human capital across nationalities

and immigration types visually. More specifically, we display the coefficients βnk from 18

when we do not assume the effect of assimilation to be necessarily constant across nationalities.

Recall that a value of zero corresponds to the human capital of natives.

Figure 7 shows two patterns. First, within nationalities, assimilated migrants tend to

have higher patenting rates, consistent with our results above. Note also that the increase

in innovation human capital due to the assimilation is roughly constant across nationality.

Secondly, the life-cycle variation in patenting is small relative to the cross-nationality variation.

In particular, while German and British immigrants have higher patent rates than the native

population, immigrants from Italy add relatively less to the nation’s knowledge stock.

4.2 Is Knowledge Portable? Direct Evidence on the Role of Hu-

man Capital

So far we have shown that immigrants played an important role for patent creation and that

they differed systematically by their nationality and the length of their stay in the United

States. Our theory interprets these differences as reflecting differences in human capital. In

this section we provide direct evidence for this human capital interpretation.
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Innovation and Pre-migration Knowledge If human capital was an important input

into the production of knowledge and human capital is at least partially portable across

space, we would expect that migrants who were innovative in their home countries in Europe

were more likely to keep innovating after their arrival in the US. In the absence of data on

immigrants’ patenting behavior prior to migrating, we cannot directly test this implication.

As an alternative, we rely on the information on migrants’ pre-migration occupations.

According to our model, human capital is reflected in patent creation. Hence, if individuals

within a particular occupation are more likely to generate patents than others, such occupations

apparently attract individuals that are abundant in innovation human capital. Leveraging

this intuition, we rank immigrants’ pre-migration occupations by their innovativeness in the

US and then ask whether immigrants who used to work in innovative occupations in Europe

are indeed more likely file a patent in the US.

To implement this procedure, we construct an occupation-based ranking of innovative

potential from the regression

Pirt = δrt +
∑
o

φotOiort + uirt, (20)

where - as before - Pirt is an indicator variable for individual i’s patent activity and δrt is

a set of county-year fixed effects. Oiort is an indicator variable, whether individual i works

in occupation o. Hence, the coefficients of interest, φo, measure the average probability of

individuals in occupation o to engage in patenting. Note that by controlling for county-year

fixed effects, φo is not identified from the variation of occupations across space, but only

compare different occupations within locations. We estimate specification (20) only for

natives to limit concerns of reverse-causality.

Because we measure occupations at the three digit level, (20) yields more than 200

estimated fixed effects. In Table 6 we report the top ten occupations based on our estimates

of φ̂o.
11 It is reassuring that occupations with a focus on engineering and other natural sciences

are the most innovative occupations. Moreover, there is a striking degree of correlation across

years.

With these estimates at hand, we then calculate individual i’s pre-migration innovation

score as PMIi = φ̂o, if individual i worked in occupation o prior to migrating. We then

consider estimate the regression

Pirt = δrt + χPMIi +
∑
j

βjIjirt + x′irtγ + uirt, (21)

11The estimates for all occupations are available upon request.
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Rank 1900 1910 1920

1 Social sciences (n.e.c.) Professional workers Physics
2 Engineers, metallurgical Engineers, mechanical Engineers, chemical
3 Engineers, chemical Designers Engineers, mechanical
4 Professional workers Engineers, mining Professional workers
5 Chemistry Engineers, electrical Engineers (n.e.c.)
6 Engineers, mechanical Chemists Technicians (n.e.c.)
7 Engineers, electrical College presidents and deans Biological scientists
8 Engineers (n.e.c.) Draftsmen Engineers, electrical
9 Airplane pilots and navigators Engineers (n.e.c.) Designers
10 Miscellaneous natural scientists Managers and superintendents, building Geologists and geophysicists

Table 6: Innovativeness Ranking of Occupations

on the population of immigrants in the US.

In Table 7 we report the results of estimating (21). Columns 1 and 2 show that our

measure of the pre-migration innovation score is highly correlated with patent activity, both

unconditionally and within regions. In column 3 we control for the nationality of immigrants.

This reduces the effect of pre-migration knowledge substantially, reflecting the fact that the

skill-composition of immigrants (as measured by their pre-migration skills) is heterogeneous

and accounts for the superior innovation performance of for example British and German

immigrants. Finally, in the last column, we control for a full set of current occupation fixed

effects. Hence, immigrants that worked in occupations with a high innovation score have - on

average - more patents and this effect is largely explained by them working in more innovative

occupations after their arrival. This is consistent with human capital being portable and an

important input in the production of knowledge.

What Do Immigrants Invent? Measuring Patent Novelty As a second source of

evidence for the importance of human capital, we also looked at the type of innovations

generated by immigrants. We are particularly interested whether immigrants’ innovations

were qualitatively different from the ‘‘typical’’ innovation created in a particular region.

While we describe the details of this measure in Section D.4 in the Appendix, the main

idea is simple. The patent data contains a detailed description of the idea being patented.

Using textual analysis we can therefore compare whether two patents are similar, i.e. whether

they rely on similar words. We use such textual analysis to devise a novelty score for each

patent by comparing it to the set of patents, which have been issued in the same location in

the past. Hence, if a patent uses very different words than typically used in patents stemming

from this region, we think of this patent as novel.

Our procedure yields a novelty score for each patent, which we express as a z-score, i.e.

with a unit variance and a mean of zero. Given this score nit, we then consider a regression
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(1) (2) (3) (4)
Pre-migration occupation 15.4∗∗∗ 13.8∗∗∗ 3.95 2.18

(1.83) (1.97) (2.95) (6.7)
German .674∗∗∗ .717∗∗∗

(.106) (.104)
Italian -1.25∗∗∗ -1.18∗∗∗

(.182) (.177)
English 1.23∗∗∗ 1.36∗∗∗

(.0733) (.0811)
Irish .731∗∗∗ .881∗∗∗

(.0854) (.095)
N 3,548,129 3,495,868 3,495,868 3,493,100
Year FE yes yes yes yes
SEA FE no yes yes yes
Occupation FE no no no yes

Year 1860-1929. Standard errors are clustered by State Economic Area (SEA).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Pre-migration Knowledge And Patent Activity

of the form

nirt = δrt + δIND +
∑
j

βjIjirt + x′irtγ + uirt, (22)

where nirt is the novelty score of patent i and δIND are industry fixed effects. The remaining

variables are defined as above. Table 8 reports the estimation results based on 22.

In column 1 we show the simple bivariate correlation between patent novelty and the

immigration status of the inventor. We find that this correlation is negative. In column

2 we control for region fixed effects. We find that now assimilated immigrants have more

novel patents than natives. This difference is due to the fact that immigrants systematically

settle in more innovative locations, where more patents are generated. This makes the

average patent more similar to the typical patent - see column 3 where we directly control

for the number of patents and which are negatively correlated with novelty score. Finally, in

column 4 we control for industry fixed effects. This further raises the correlation between the

immigration status and the novelty of the patent.

As with our results regarding the importance of inmigrants’ pre-migration occupations,

these findings are consistent with the presence of portable human capital. If immigrants

were indeed able to bring ideas from the old continent to the US, we would expect that such

knowledge would provide immigrants with a comparative advantage in patenting, that this

would be particular pronounced for immigrants with innovative occupations in their home
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Standardized Novelty Score

(1) (2) (3) (4)
Recent immigrants -.222∗∗∗ -.00468 -.0331 .0183

(.0521) (.0146) (.0215) (.0134)
Assimilated immigrants -.141∗∗∗ .0145∗ .00242 .0181∗∗∗

(.0316) (.0074) (.0116) (.00657)
(ln) Number of patents -.134∗∗∗

(.0156)
R2 .0053 .158 .0895 .246
N 364,446 364,356 364,446 358,510
Decade FE yes yes yes yes
County FE no yes no yes
Industry FE no no no yes

Year 1900-1919. Standard errors are clustered by State Economic Area (SEA).
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Immigrants and Innovation Novelty

country and that their ideas would be relatively novel. Tables 5., 7 and 8 are qualitatively

consistent with this narrative.

5 Immigrant Inflows and Local Patent Creation

In Section 3 we used our microdata to estimate immigrants’ and natives’ innovation human

capital ϕj. To do so we exploited the within-region variation in patent activity. Hence, this

variation is not suited to discipline two aspects of our theory, which operate at the regional

level: differences in ‘‘innate’’ innovation potential across localities (ζr) and the strength of

inter-temporal spillovers in the idea production function (ϑ). In this section we use variation

in patent creation across regions to estimate these objects. We will use these estimates in

our quantitative analysis in Section 6.

5.1 Immigration Inflows and Regional Patent Activity

Before turning to the structural estimation of ϑ and {ζr}r, we study the relationship between

immigrant inflows and subsequent patent activity in a regression framework and show that

our cross-regional results are qualitatively consistent with our findings from the micro data.

We know that the number of patents generated in region r, Prt, is proportional to h∗rtLrt.

To link these objects to the data, we assume that the contemporaneous flow of patents Prt
is measured as the number of patents issued between t and t+ 1 and that Lrt and hrt are
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determined from the stock of the population and its composition at t.

Using that h∗rt follows the endogenous AR(1) process given in (14), our theory implies

that the number of patents issued in region r is given by

lnPrt = const + lnh∗rt + lnLrt

= const +
1

θ
ln

(∑
j

$j
rt

(
ϕj
)θ)

+ ln ζr + ϑ ln
(
h∗rt−1Lrt−1

)
+ lnLrt

= const +
1

θ
ln

(∑
j

$j
rt

(
ϕj
)θ)

+ ln ζr + ϑ lnPrt−1 + lnLrt. (23)

For simplicity consider (as in the Section 2.5 above) the case of two types: immigrants and

natives. Hence, (23) suggests the regression

lnPrst = δr + δt + δs + β lnPrst−1 + χ$I
rt + φ lnLrt + urt, (24)

where Prst is the number of patents in industry s in region r and δs is a set of sector fixed

effect. The theory also implies that β = ϑ < 1, that φ = 1 and that χ = 1
θ

(
(ζI/ζN)θ − 1

)
is

related to the average human capital of immigrants relative to natives.

In Table 9 we report the results from estimating (24) at the county-industry level for the

years 1900, 1910 and 1920 when we measure $I
rt as the share of recent immigrants, i.e. the

share of foreign born that arrived within the last 10 years.

In column 1 we only include year and industry fixed effect and find a large and positive

effect of recent immigration on patent creation. Columns 2 and 3 highlights that this positive

effect is to a large extent due to spatial sorting: once county fixed effects are controlled for,

the coefficient drops substantially and is no longer significant.

Our empirical analysis in Section 3 highlighted the difference between recent and assimi-

lated immigrants because migrants’ innovation human capital is sharply increasing in the

length of their stay in the US. This implies that if we were to measure the share of immigrants

not solely as ‘‘recent arrivals’’ but rather as the share of foreign born, we would expect larger

effects in the cross-section. Column 4 shows that this is exactly what we find. In terms of

our theory, the coefficient χ in (24) now reflects the average human capital of all foreign

born and not only recent immigrants.

Endogeneity The first four columns of Table 9 estimate (24) using OLS. This is problematic

if immigrant inflows are correlated with shocks to patent creation conditional on county fixed

effects. In terms of our theory, this would for example be the case if the regional innovation
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OLS IV

(1) (2) (3) (4) (5) (6)
Share of immigrants 1.902∗∗∗ 0.337 0.389 1.151∗∗ 3.229∗∗

(0.227) (0.279) (0.276) (0.584) (1.356)
Share of foreign born 0.588∗∗

(0.237)
(ln) Populationrt 0.312∗∗∗ 0.202∗∗∗ 0.215∗∗∗ 0.193∗∗∗ 0.195∗∗∗ 0.186∗∗∗

(0.0118) (0.0481) (0.0499) (0.0483) (0.0480) (0.0490)
(ln) Patentsrit-1 0.599∗∗∗ 0.503∗∗∗ 0.503∗∗∗ 0.503∗∗∗ 0.503∗∗∗ 0.504∗∗∗

(0.0106) (0.0109) (0.0109) (0.0109) (0.0109) (0.0110)
Urban sharert -0.140

(0.0947)
R2 0.666 0.700 0.700 0.700 0.243 0.239
N 72373 72157 72157 72555 72555 72555
First stage F 67.25 35.90
County FE no yes yes yes yes yes
Year FE yes yes yes yes yes yes
Industry FE yes yes yes yes yes yes

Standard errors in parentheses

Note: Year 1900-1930. Standard errors clustered by county. Immigrants are people who immigrated within

the last ten years for a given census year. Foreign born are all of the immigrants
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 9: Regional patenting and immigration inflows
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efficiency ζr was time-varying and immigrants would sort towards regions that experienced

an increase in ζrt. In the last two columns of Table 9 we therefore estimate (24) with an

instrumental variable strategy.

In column 5 we use a traditional ’shift-share’ instrument for immigrant inflows, exploiting

the fact that immigrants are likely to settle in places where their ancestors were living in the

past (Altonji and Card (1991); Card (2001)). Intuitively, we predict immigrant inflows from

the time series of actual immigrant inflows from different origin countries, interacted with

the distribution of ancestors across space in the previous period. More formally, let I to be the

aggregate immigrant inflows of origin country o at time t, we construct our first instrument

for regional immigrant inflows as

IV 1
rt =

∑
o

Aort−1
Aot−1

Iot, (25)

where At−1
or

At−1
o

is the share of ancestors in region r of an origin country o in the previous period -

see Section E.3 in the Appendix for more details of the instrument construction. Using this

shift-share instrument for the share of recent immigrants yields an estimate for χ, which is

larger then the OLS estimate (see column 5).

In column 6 we use an alternative instrument following the approach of Burchardi et

al. (2020). Burchardi et al. (2020) argue that the traditional shift-share instrument in (32)

will be invalid if the distribution of past ancestry is correlated with future patent growth.

To address this issue they propose a modified version of (32), where not the entire ancestry

distribution is used to predict future immigration, but only an exogenous component. Again,

see Section E.3 in the Appendix for more details. Column 6 again shows a positive relationship

between immigration inflows and patent activity. The points estimate is larger than with the

‘‘traditional’’ shift-share instrument, but is also more imprecisely estimated.

Our preferred specifications are the OLS estimates in columns 3 and 4. They are consistent

with our theory, which implies that the inclusion of the county fixed effects and past patent

activity appropriately controls for any endogeneity of immigrant inflows. In addition, our

theory provides an explanation for why one might expect the IV estimates to be upward

biased. Our theory, in particular the discussion in Section 2.5, highlights that the productivity

effects of immigrant inflows are cumulative. Hence, past immigration will drive both future

immigration in the spirit of the shift-share instrument and the local creation of varieties,

which reduces the cost of innovation. While our theory implies that this latter effect is indeed

fully controlled for by including lnPrst−1 as a dependent variable, it is important to highlight

that the validity of the instruments relies on this particular functional form.

In any case, because we will not rely on these estimates for our quantitative exercise in
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Section 6, none of our quantitative results hinges on the numbers reported in Table 9.

5.2 Estimation of Structural Parameters

We can also use (23) to directly estimate the inter-temporal spillover elasticity ϑ and the

regional heterogeneity in innovation efficiency ζr. To first-order, (23) implies that12

lnPrt = const +
∑
j 6=N

$j
rt

(ϕj)
θ − 1

θ
+ ln ζr + ϑ lnPrt−1 + lnLrt. (26)

Hence, we can estimate the scale elasticity ϑ and the spatial innovation heterogeneity ζr from

the regression

lnPrst = δr + ϑ lnPrst−1 + δs + δt +
∑
j 6=N

βj$j
rt + γ lnLrt + urst. (27)

Note that we again include industry fixed effects δs to allow for heterogeneity across industries,

which is not modeled in our single-industry model. This implies that we only identify ζr up

to a common scale. This, however, is inconsequential as the number of varieties Nrt does not

have a natural scale.

In Table 10 we report the results for ϑ based on (27). In the first column we directly

estimate (27) without imposing the restrictions from the theory that γ = 1 and that

βj = 1
θ

[
(ϕj)

θ − 1
]
. For brevity we do not report the ten different coefficients βj (note that

we have five nationalities and both recent and assimilated immigrants). We estimate that

ϑ =0.563.13

Note that the theory restricts the population elasticity γ to be equal to unity. As seen in

Table 10, this condition is not satisfied. Similarly, the theory also implies that the coefficients

12Note that

ln

∑
j

$j
rt

(
ϕj
)θ = ln

(ϕN)θ + ∑
j 6=N

$j
rt

[(
ϕj
)θ − (ϕN)θ]

 ≈∑
j 6=N

$j
rt

(
ϕj
)θ − (ϕN)θ
(ϕN )

θ
=
∑
j 6=N

$j
rt

[(
ϕj
)θ − 1

]
,

where the last equality used our normalization that ϕN = 1. Hence,

lnPrt = const +
∑
j 6=N

$j
rt

(
ϕj
)θ − 1

θ
+ ln ζr + ϑ lnPrt−1 + lnLrt.

13Note that this is qualitatively consistent with our cross-county results reported in Table 9, where we
found that ϕ ≈ 0.5
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on the shares $j
rt should coincide with the estimates of human capital. Again this is not borne

out empirically. In column two of Table 10 we therefore estimate equation (27) when imposing

these restrictions. Hence, we use our estimates of (ϕj)
θ

to directly construct
∑

j 6=N β
j$j

rt

and then consider as the dependent variable lnPrst − lnLrt −
∑

j 6=N β
j$j

rt. Doing so yields

an elasticity of ϑ = 0.548, which is very similar to the non-restricted estimate.

(1) (2)
(ln) Patentsrst-1 0.563∗∗∗ 0.548∗∗∗

(0.0141) (0.0144)
(ln) Populationrt 0.303∗∗∗

(0.0550)
R2 0.751 0.700
N 33814 33814
Decade FE yes yes
SEA FE yes yes
Industry FE yes yes

Population composition {$j
rt} yes no

Restriction from theory no yes

Table 10: Estimation of scale elasticity ϑ

In addition to the scale elasticity ϑ, we also rely on equation (27) to estimate the

distribution of spatial innovation efficiency ζr. This distribution is displayed in Figure 8.

In the left panel we show the histogram of the estimated fixed effects δr from 27. For

comparison we also display our estimate for New York City (NYC), which we estimate to

be very productive in generating new varieties. In Figure 8 we show the cross-sectional

correlation between these fixed effects estimated and the observed stock of patents as of 1900,

i.e. prior to our sample used to estimate (27). Our theory suggests that this relationship is

positive. In fact, we show explicitly below that in a stationary equilibrium, the relationship

between ζr and patent activity is monotone and log-linear. Figure 8 shows that reassuringly

this is also the case in the data. There is strong positive relationship, which is approximately

log-linear.

6 The Aggregate and Local Effects of Immigration Re-

strictions: A Quantitative Illustration

We next use the theory to perform a quantitative exploration of the role of migration for

American growth. We implement our exercise at the level of the 452 SEAs in the US. We
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Figure 8: The Distribution of Innovation Efficiency ζr

take 1880 as our initial period and consider a period a 5-year interval. We study the episode

of 1880-1920. We furthermore enrich the theoretical framework in two aspects.

We first proceed to specify spatial friction of moving goods following a voluminous

literature in international trade. In particular, we assume that regions in the continental

United States trade their differentiated products subject to an iceberg cost τrd ≥ 1, where we

normalize τrr = 1. The price of the product from region i in region j is thus prd = prτrd and

the price index in region j can be now written as

P 1−σ
d =

∑
r

Nrp
1−σ
r τ 1−σrd . (28)

The market clearing condition in the presence of trade costs can be now written as

σwrLr = h∗rLr

(
σ

σ − 1

)1−σ

w1−σ
r

∑
d

τ 1−σrd

Yd

P 1−σ
d

. (29)

Notice that in this specification, the elasticity of trade flows to trade costs is 1−σ. We measure

trade costs following Donaldson and Hornbeck (2016). These trade costs are symmetric and

are constructed by using waterway and railroad distances in 1870 and 1890 between counties.

For our purposes we use just the 1870 trade costs.14

14We use a SEA to county crosswalk available on the IPUMS website to convert the county level codes
that they provide to SEA codes. This provides us with only 430 SEA codes of the 452 SEAs available in our
1880 U.S. census data. In order to address this further, for every missing SEA we use the NBER county to
county great-circle distance data to impute and recover data for the remaining SEAs.
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Second, we need to further specify the spatial labor supply function as this will determine

the persistence of local immigration inflows. To do so, we borrow from a large literature

on economic geography and assume that workers can move with probability ψ and that

conditional on being allowed to move, they draw a multiplicative location-specific preference

shock from a Fréchet distribution with shape ε. This implies that labor supply of workers of

each type j evolves according to the law of motion

Ljrt = (1− ψ)Ljrt−1 + ψ

(
wjrt
Prt

)ε
∑R

d=1

(
wjdt
Pdt

)εLjt−1 + Ijrt for j = 1, ..., Jr (30)

where wjrt is given by equation (8) and Ijrt denotes the number of immigrants of type j

arriving in region r at time t from overseas. These immigrant inflows, which we take as

exogenous, are our main ‘‘policy variable’’ in that we quantify the aggregate and spatial

losses of restricting the inflow of immigrations of particular types.

Finally, we model immigrants’ assimilation process and hence the supply of human capital

in a parsimonious way. First of all, as in the data, we assume that the inflowing immigrants

Ijrt are all ‘‘recent’’ immigrants and assimilate within one period. Secondly, in the absence of

a fully specified demographic model, we assume that a fraction α of assimilated immigrants

turn into natives as a reduced form way to capture the fact that children of immigrants are

natives.

In Figure 9 we display the timing of our quantitative model. Given the state variables for

the stock of workers of different type and the measure of available varieties in each region,[
Ljrt−1, Nrt−1

]
, the equilibrium then determines the allocation of labor, new variety creation,

the wages and the innovation threshold,
[
Ljrt, Nrt, wrt, h

∗
rt

]
from the evolution of human

capital (12), the spatial labor supply function (30), the equilibrium cutoff h∗rt, equation (2),

and the labor market clearing condition, equation (29). Given the initial conditions and the

structural parameters of the model, we can calculate a sequence of dynamic equilibria. In

particular, we can calculate the counterfactual effects of restricting immigrant inflow to the

US.

6.1 Calibration

To calculate a dynamic equilibrium, we need to take a stand on two objects: the structural

parameters and the initial conditions of the system. Consider first the structural parameters.

Our model is parsimoniously parameterized and consists only of seven parameters. We

need to discipline the elasticity of substitution σ, the spatial labor supply function (ψ, ε),
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Figure 9: Timing of Quantitative Model

the distribution of human capital
(
θ, {ϕj}j

)
, the strength of scale effects ϑ and the spatial

distribution of innovation efficiency {ζr}r.
For local idea production summarized by {ϕj}j, ϑ and {ζr}r, we rely on our estimates of

Sections 3 and 5. Our estimates for the distribution of human capital {ϕj}j are displayed

in Figure 7 and the distribution of innovation efficiency {ζr}r is shows in Figure 8. For the

scale elasticity ϑ, we rely on our estimate in Table 10, which yielded ϑ = 0.55.

The remaining parameters we adopt the following strategy. For the elasticity of substi-

tution σ we assume a value of five, which is in between the median and average estimates

reported by Broda and Weinstein (2006), within the range of estimates of Oberfield and

Raval (2014) across different sectors (three to seven), and consistent with values of trade

elasticity estimates reported in the trade literature (see e.g, Anderson (2010)). Our model

implies that the labor share is given by θσ−1
θσ

with the remainder going to entrepreneurial

payments. Targeting an entrepreneurial share of 10% yields a value of θ of two. For the

two parameters of the labor supply function, (ε, ψ) we rely on estimates from the literature.

We follow Peters (2019) that sets ε of about 2. For the moving shock ψ, we rely on the

estimates of Eckert and Peters (2018), who use matched Census distributed by IPUMS, to

measure that 55% of people remain in their commuting zone between 1880 and 1900. Since

each period in our model is 5 years and SEAs are typically bigger than commuting zones

we set (1− ψ)4 = 0.55 so that ψ ≈ 0.14 as an upper bound of the mobility probability. Our

final set of parameters is summarized in Table 11.

In terms of our initial conditions, we take the empirically observed population distribution[
Ljr1880

]
r

for natives and our five immigrant groups (Italians, Germans, British, Irish, Other)

as given. Consistent with our timing assumption in the model (see Figure 9), all such
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Structural Parameter Value

θ Shape parameter of pareto 2
σ Elasticity of substitution 5
ε Spatial elasticity of labor supply 2.5
ψ Moving probability 0.14
ϑ Scale elasticity of existing ideas 0.55
ϕj Relative human capital See Figure 7
ζr Regional efficiency shifter See Figure 8

Notes: The table reports the structural parameters used for our quantitative analysis.

Table 11: Structural Parameters

immigrants are assimilated. For the initial distribution varieties Nr1880, we use the model to

predict the distribution of varieties under the assumption that is it a steady-state taking the

population distribution in 1880 as given.15 Because we calculate our main counterfactual

results relative to a baseline with the empirically observed immigration inflows, this choice is

not essential for our results.

6.2 The Economic Effects of Immigration Restrictions

To quantify the economic role of European immigrants, we consider the following experiment.

Consider the US in 1880. In the following four decades, millions of immigrants from different

countries are going to enter the United States. In Table 12 we report these aggregate

inflows from the different countries of origin. To allocate these aggregate inflows across

space in the US, we assume that immigrants were, in fact, avid believers of the traditional

shift-share instrument and dispersed across the US in proportion of the prevailing distribution

of immigrants of their nationality (or ancestry). Formally, we assume that the inflow of

recent immigrants of nationality n to region r at time t, LRnrt , is given by

LRnrt =
LAnrt−1∑
d L

An
dt−1
× Int , (31)

15It is easy to show that the stationary distribution of varieties for a given population size is given by

Nrt =

(
1
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where n denotes the growth rate of the population.
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Year British Irish German Italian Others

1885 400,196 365,207 920,215 108,216 1,243,318
1890 410,704 308,854 524,966 159,444 806,658
1895 236,259 233,922 457,894 304,811 1,073,864
1900 92,500 171,788 121,178 298,950 689,016
1905 129,477 166,881 154,928 838,424 1,965,207
1910 340,041 178,059 173,794 1,092,051 3,130,033
1915 308,530 137,410 161,195 1,104,833 3,462,477
1920 63,348 29,035 13,032 125,083 941,949

Notes: The table reports the number of immigrants entering the United States between 1880 and 1920.

Table 12: Aggregate Inflows of Immigrants: 1880 - 1920

where LAnrt−1 is the number of assimilated immigrants of nationality nin region r. Given the

allocation rule (31), we can calculate the dynamic equilibrium of our economy for any matrix

of immigration inflows {Int }tn.

To quantify the role of immigrants for US growth, we consider various forms of immigration

restrictions, which could have been imposed in 1880. To measure both the aggregate and

local effects of such restrictions, we proceed in the following way. We first calculate the

equilibrium time-path for the actually observed immigration inflows, i.e. the matrix {Int }tn
reported in Table 12, while keeping the native population fixed in the 1880 to focus on their

role of immigrants. We then calculate various policies like (i) restricting all immigration (i.e.

setting Int = 0 for all n and t), (ii) restricting immigration from Germany and Britain and

(iii) restricting immigration from Italy. We are particularly interested in the comparison

between the German/British restriction and the Italian restriction for three reasons. First,

and most importantly: we estimated in Section 3 that German and British immigrants had

higher innovation human capital than Italians. Hence, this comparison can shed light on the

relative importance of human capital and pure scale effect. Second, the spatial exposure of

different regions to these aggregate shocks is very different because the initial distribution of

immigrants in 1880 differed by nationality. Finally, as seen in Table 12, the time path of

aggregate inflows is very different. The big wave of Italian immigrants entered the US in the

early 20th century, while they hey-days of German immigration were the late 19th century.

Aggregate Impact In Figure 10 we display the aggregate impact of immigration restric-

tions as implied by our model. Consider for example the purple line, which depicts the

time path of aggregate GDP per capita (GDPpc) of an economy without any international

immigration relative the baseline where immigration is given in Table 12. Our model suggests
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Notes: The figure shows the change in aggregate income per capita for different counterfactuals relative
to the baseline economy, where international immigration is given in Table 12, and native populations are
given in their 1880 level. We report the counterfactual of shutting down all immigration (purple line),
immigration from Germany and Britain (turquoise line) and immigration from Italy (blue line). In the red
line we depict the aggregate impact shutting down immigration from Germany and Britain if German and
British immigrants had the same human capital as Italian Immigrants, i.e. ϕRn = ϕRI and ϕAn = ϕAI for
n = GER and UK.

Figure 10: The Aggregate Impact of Immigration Restrictions

that the US economy could have lost 15% of GDPpc by 1900 and almost 1/3 of GDPpc by

1920, if it had closed its international borders by 1880.

To put this number into perspective, we consider two ‘‘partial’’ immigration restrictions.

In turquoise we show the impact of restricting entry to all immigrants from Germany and

Britain. Doing so would have reduced income per capita by roughly 10% by 1920. The time

path of such losses is interesting: the losses accumulate quite quickly until roughly 1905, when

British and German immigrants were important. In the early 20th century, the economic

losses are much smaller as immigration from these countries became less important in the

aggregate. In blue we depict the losses, which are attributable to an exclusion of Italian

immigrants starting in 1880 (i.e. 40 years before the Quota-Act, which essentially restricted

immigration from Italy). The economic consequences of such a policy are far less severe.

First of all, given the small number of Italian immigrants prior to 1900, there is hardly an

impact prior to 1900. Secondly, given the relatively low innovation human capital of Italian

immigrants, the US economy would lose out on relatively fewer novel ideas by prohibiting

Italians from entering the country.

The difference between the German/British and the Italian counterfactual is suggestive
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for the importance of human capital. However, a precise decomposition into the human

capital channel and the scale effect channel it is still difficult because German and British

immigrants differed both in their human capital and their aggregate importance. To see that

differences in human capital as estimated from our micro data are quantitatively important,

consider the red line, where we depict a hypothetical situation of restricting German British

immigration if they had the same human capital as Italians. If most of our effect is due to

scale effects, the red and the turquoise line should be close to each other as the number of

people affected by the policy is identical. If in contrast, human capital was the sole driver

of the impact of immigration, the red and the blue line should be equal as the average

human capital endowment of immigrants is the same. Figure 10 shows that both channels

are important. Differences in human capital account for about 2/3 of the differences, while

differences in the size of the affected population account for about 1/3.

Spatial Impact The effects of shutting down international migration are spatially unbal-

anced. First, given the distribution of immigrants in 1880, different regions are going to be

differentially exposed to changes in aggregate immigration inflows, if - as assumed in (31) -

immigrants allocate spatially in proportion to the existing distribution. Second, the spatial

heterogeneity in innate innovation efficiency ζr implies that high-ζ are particularly attractive

for individuals with ample innovation human capital, while low-ζ regions attract groups, that

have a comparative advantage in production rather the innovation.

In Figure 11 we display the distribution of regional income losses induced by restricting

immigration inflows from Germany and Britain. In the blue histogram we depict the losses in

the short-term, i.e. in 1890, and in the red histogram we depict the long-term consequences

in 1920. The first thing to note is that the losses from immigration are cumulative: by

1920, the losses are two to three times larger as in 1890. This is both due to the fact

that the ‘‘treatment’’ is larger as immigration restrictions would further reduce population

inflows between 1890 and 1920 and that according to our theory, immigration restrictions are

cumulative in the presence of positive scale effect, i.e. ϑ > 0 - recall the discussion in Section

2.5, in particular Figure 1. Secondly, the dispersion of losses is larger in the short-run than

in the long-run. This is the consequence of the existence of spatial linkages through spatial

mobility and trade.

To see the aforementioned spatial heterogeneity in exposure directly, we depict the

geography of losses in local income per capita for each SEA in the two maps in Figure 12. In

the left map, colored in blue, we depict the distribution of losses of immigration restrictions

for Germany and Britain. In the right map, colored in green, we depict such losses for

immigration restrictions from Italy. We color-code regions in five quantiles, with darkest
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Notes: The figure shows the distribution of income losses at the SEA level of shutting down immigration
from Germany and Britain in 1880. The blue histogram reports the distribution of income losses in 1890.
The red histogram reports the distribution of income losses in 1920.

Figure 11: The Spatial Impact of Immigration Restrictions

color indicating the largest losses, i.e. the highest exposure. The two maps in Figure 12 show

that the economic impact of immigration restrictions differs strongly across space.

7 Conclusions

Between 1880 and 1920, more than 20 million immigrants made the United States their home.

In this paper, we evaluate the role that immigration wave played to increase US productivity

growth.

At the heart of our analysis is a novel micro-data set on individual patent behavior,

which we construct by matching the population of US patents to the restricted-use complete

count US Federal demographic decennial censuses from 1880-1920. To empirically measure

immigrants’ human capital, we augment this data by merging it to millions of original

immigration records and historical passenger lists, both of which contain detailed information

on immigrants’ occupations before migrating. Our final dataset covers more than 400,000

patents and contains linked pre- and post-migration occupational information for more than

3 million immigrants over the four decades between 1880 and 1920.

Using this data we document three results. First, we show that immigrants were more

prolific innovators than natives, in particular after having lived in the United States for

more than a decade. Second, we find stark differences in patenting across nationalities with
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Notes: The two maps show the distribution of income losses at the SEA level of shutting down immigration
from Germany and Britain (left map in blue) and Italy (right map in green). In the left map we show income
losses in 1910, in the right map we show income losses in 1920.

Figure 12: The Spatial Heterogeneity of Immigration Restrictions

German and British immigrants being much more innovative than, for example, immigrants

from Italy. The fact that the composition of sending countries changed between 1880 and

1920 and that the regional distribution of immigrants in the US was very heterogeneous

implies that the inflow of innovation human capital varied both across time and across space.

Third, we estimate large spatial differences in innovation efficiency and show that immigrants

were predominantly living in such locations.

We interpret this evidence through the lens of a novel model of spatial growth. The

model stresses the local supply of innovative human capital as the main determinant of local

productivity. How such local productivity gains affect other locations and the aggregate

economy depends on trade linkages and the process of spatial mobility. We exploit the ability

of the theory to tightly connect to the empirical evidence and aggregate the empirical estimates

of human capital for different immigrant groups to quantify the importance of immigrants in

a realistic setting featuring many locations, trade costs, and frictional population mobility.

As an application, we study the regional and aggregate economic consequences of immi-

gration restrictions. At the aggregate level, we find income per capita in 1920 would have

been 30% lower if the US has closed its borders to international migrants in 1880. We also

find immigrants’ human capital was an important contributor to US growth: while restricting

German and British immigration after 1880 would have reduced income per capita by 10%,

curtailing immigration from Italy would have had much smaller effects.
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A Empirical Appendix

Our analysis relies on four main data sources: the complete count population census for the
years 1850 to 1940, the population of US patents since 1790, the Hamburg Passenger Lists
and the Immigration Records from Castle Garden. In this section we describe these datasets.

A.1 Population Census Data: IPUMS Complete Count U.S. Cen-
sus (1850-1940)

Our main source of information is the restricted-access version of the complete count US
Population Census for the years 1850-1940 (Ruggles et al., 2020). These individual-level
micro data exist for all decades except for 1890 (which was lost due to fire) and contain
detailed demographic information for each individual residing in the US.

We heavily rely on the fact that the restricted-access version of the data reports the
name of each individual, which we use to link individuals to patents and immigration records
(see Section B, where we describe the linking procedure in more detail). We also use the
information on individuals’ locations, their age, their immigration status, their birthplace
and their employment structure, in particular their occupation.

A.2 Historical Immigration Records (1820 - 1914)

We construct our immigration database from two primary sources: the Castle Garden
Immigration Database, which captures inflows into the US, and the Hamburg Passenger
Lists, which captures outflow from Europe to the US.

A.2.1 The Castle Garden Immigration Database (1820-1914)

The Castle Garden database contains the list of all immigrants entering the US via the port
of New York between 1820 to 1914. In total, the database comprises approximately 11 million
individual micro-records. Castle Garden was America’s first official immigration center, and
the captain of each arriving ship prepared a Customs Passenger List and filed with it at the
port of arrival. This enabled a systematic collection of data on immigration to the United
States.

For our analysis we exploit the fact that the Castle Garden Data contains details infor-
mation on immigrants’ pre-migration occupations. In order to link this information to the
Population Census, we rely on a host of demographic information such as name, age, family
structure and arrival year (see Section B.1 for details of the record linking process.).

A.2.2 The Hamburg Passenger Lists (1850-1914)

The The Hamburg Passenger Lists (HPL) contain passenger lists of ships that departed from
the port of Hamburg, Germany from 1850-1934 . We got access to this database through
a cooperation with the State Archive of Hamburg. Due to privacy concerns we only have
access to the data until 1914.
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We have access to approximately 4.6 million individual records. Among them, roughly
77% were headed to the United States. Like the immigration records from Castle Garden, the
Hamburg Passenger Lists report the pre-migration occupation of each immigrant. In addition,
they usually contain information such as the name, gender, age, nationality, departure date,
ship name, route and final destination.

Because the HPL records were originally written in German and some key information
such as nationality was not reported in certain time periods, we process the HPL data using
translation, classification, imputation and harmonization techniques of key variables. Details
of these ‘‘pre-linking’’ data preparation steps of the HPL data are available in Section D.1.

A.3 Historical Data on US Patents

To measure innovative activity, we exploit information on patenting. We build our patent-
dataset from two sources: the HistPat (Petralia et al. (2016)) and Google’s Patent Search
Engine (https://patents.google.com/). The United States Patent and Trademark Office
(USPTO) granted millions of patents since 1790, and digitized version of these data since 1836
became publicly available through USPTO Patent database. However, pre-1975 patents are
mostly in a format that cannot be directly used for research (i.e. not in a machine-readable
format for quantitative analyses).

The HistPat and Google Patent search engines tackles these challenges by cleaning
and processing this original data. Google (and Reed Tech) processed original patent docu-
ments through the Optical Character Recognition (OCR) process the HistPat takes these
OCR-processed data and constructs a systematic database through a standard text0mining
algorithm. Therefore, the HistPat releases Patent Number, Patent Grant Year, Geographic
Information such as city, county, and state for all patents between 1836 and 1975.

Given these digital sources, first, we take the HistPat data and extracts the patent
year and geographic inforamtion, and harmonize the geography at the SEA level using
county-boundary files by decade from NHGIS (Manson et al. (2019), see Section D.2 for
details). Then, we use Google’s patent search engine, and collect 1. Patent assignee names,
2. entire patent description. 3. Patent Industry classification which follows the Cooperative
Patent Classification (CPC) for all patents.16 We harmonize the CPC-based patent industry
classification into IND1950 which is a standard 1950 Industry classification of US Census
Bureau (Ruggles et al. (2020) also recodes information about industry into 1950 Census
Bureau industrial classification system to enhance comparability of industry data across years
included in the IPUMS).

After we construct this patent-level data that fits our research need, we link patent records
to individuals in the population census, using the name and location of patent assignees (see
Section B.2 for details of this procedure). This patent-census linked data enables us to study
the determinants of patenting at the micro-level. We then take the patent description of
each patent, and devise a measure of novelty by performing textual analysis. In doing so,
we closely follow Kelly et al. (2020) (See Section D.4 describes for details). This textual

16The Cooperative Patent Classification (CPC) has been jointly developed by the European Patent
Office (EPO) and the United States Patent and Trademark Office (USPTO). Google Patent Database lists
CPC-based Classification for every patent.
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analysis-based patent novelty measure allows us to study how a particular patent is more
novel (or ‘‘innovative’’) than others beyond classification.

B Record Linking

In this section, we provide details on the procedure to link (i) immigrants from the Hamburg
Passenger Lists and Castle Garden Database to the US Census and (ii) patent assignees from
the US Patent records to the US Census.

We implement a supervised discriminative machine learning approach to link historical
records without time-invariant individual identifier(s). The essence of this approach is that
we use training data (as ‘‘teaching-material’’) to train the algorithm on how to identify the
potential matches based on certain discrepancies in the data.17 We create a training dataset
which contain both ‘‘true’’ and ‘‘false’’ matches and their characteristics. By taking this
training data, we build a prediction model, or learner, which will enable us to predict the
outcome for new, unseen objects. A well-designed learner armed with a solid training dataset
should accurately predict outcomes for new, unseen objects.

Our end-goal is to use the training data as inputs to predict the output values (i.e.
predicting the pair of observations are potentially a match or not). Throughout this process,
we tune a matching algorithm that matches individual records from various sources (discussed
in Section A) while minimizing both false positives and false negatives and reflecting inherent
noises in historical records.

We explored various models for model selection, and we ultimately chose the machine-
learning approach of random forest classification. This method is more conservative in
matching records, the number of unique matches are significantly higher than for other
machine-learning based algorithms such as the standard Support Vector Machine model
(used by IPUMS in linking complete count 1880 and 1% sample of census records), and
it is more flexible in dealing with missing values than many other competing algorithms
such as XGBoost (used by Ancestry.com for providing users the potential search outcomes).
Additionally, it is also computationally efficient (Lee (2019)).

Abramitzky et al. (2020) compares how various automated algorithms including machine-
learning approach to record linking perform relative to each other and relative to the manually
linked data. Abramitzky et al. (2020) concludes that automated methods generate a very low
(less than 5%) false positive rates, and that coeffiicient estimates and parameters of interest
are very similar when using linked samples based on each of the different automated methods.

Overall, finding of such supports that our record linking algorithm (as a class of automated
record linking algorithm) would be reliable by generating very low false positives, while
computationally efficient.

17For example, Heinrich Engelhard Steinweg, the founder of prominent piano manufacturing company,
Steinway & Sons, anglicized his names into ‘‘Henry E. Steinway.’’ Therefore, in linking his records across
censuses, string comparison measures called Jaro-Winkler distance of his first (Heinrich vs. Henry), middle
(Engelhard vs E.) and last name (Steinweg vs Steinway) would show name discrepancies) even if his birth
year and birthplace may be the same across different records
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B.1 Linking Immigrants to the US Census

B.1.1 Linking Immigrants from the Hamburg Passenger Lists to the US Census

To link individuals appearing in the Hamburg Passenger Lists to the US Census, we use
information on name, race, age, departure year and nationality. We proceed in two steps.
We first identify a set of individuals with the same nationality and race, whose age and names
are similar. Specifically, we consider all individuals whose age in the Passenger Lists and
the Census differ by at most two years and whose Jaro-Winkler distance of first name and
last name is at least 0.8 (1 being the maximum Jaro-Winkler string similarity measure and 0
being the minimum).

If multiple individuals from the US Census satisfy these criteria (i.e. are potential matches),
we iteratively apply three rules to identify a unique match. First, we restrict the Jaro-Winkler
distance for the last name to be greater than or equal to 0.85. Second, for individuals over
the age of 25 at the time of immigration, we impose that their marital status must be stable
across datasets. Finally, we impose the departure year in the Hamburg Passenger List and
the year of immigration in the census data to not be more than three years apart. See Table
13 where we summarize this procedure.

Data Linked Rules for Searching Potential Matches Rules for Pinning down Unique Matches

Hamburg Passenger Lists to Census

- Search within the same birthplace and
race:

1. Jaro-Winkler Distance of first and

last name (minimum of 0.8)

2. Age (Census vs. HPL Birth Year,

differences up to 2 years)

- Given the potential set of matches:
1. Last name Jaro-Winkler distance

≥ 0.85

2. If Age ≥ 25, Census Marital Status =

Marital Status

3.

|Census Immigration Year - Departure Year| ≤
3

Castle Garden Census to Census

- Search within the same birthplace and
race:

1. Jaro-Winkler Distance of first and

last name (minimum of 0.8)

2. Age (Census vs. CG Birth Year,

differences up to 2 years)

- Given the potential set of matches:
1. Last name Jaro-Winkler distance

≥ 0.85

2. If Age ≥ 21, Census Marital Status =

Marital Status

3.

|Census Immigration Year - Arrival Year| ≤
3

Patent to Census

- Search within the same State Economic
Area:

1. Jaro-Winkler Distance of first and

last name (minimum of 0.8)

- Given the potential set of matches:
1. Last name Jaro-Winkler distance

≥ 0.85

2. Patent Year - Birth Year ≤ 80

Table 13: Record Linking Rules

In Table 14 we report the number of matches and match rate between HPL and Census
for different nationalities over time. Not surprisingly, among the matched records from the
Hamburg Passenger Lists, German immigrants in account for the largest share of immigrants.
In contrast, Italian immigrants are not the primary immigrant group as Italian immigrant
did not typically depart to America via Hamburg. However, Russian immigrants rapidly
rose in the beginning of the twentieth century, making up one of the largest immigrant
group in linked HPL-Census records, their match rate is systematically lower than those
of German immigrants. It is also noteworthy that match rate given each nationality tends
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to decrease over time as the number of immigrants increased. In Section C.1 we discuss
potential explanations for such differences in match rates over time and by nationality in
greater detail.

1850 1860 1870 1880 1900 1910 1920

Number of Natives 8,979,637 11,881,405 16,510,374 14,702,972 33,017,727 39,735,657 46,122,485
Number of Foreign-borns 1,263,283 2,210,386 2,963,059 3,464,945 5,742,188 7,876,248 7,738,920

Number of Matches: CG and Census 175,170 385,503 552,971 720,918 580,142 598,789 441,803
Number of Matches: Germany 56,262 154,282 246,804 343,975 273,702 256,698 175,946
Match Rate: Germany (0.28) (0.27) ( 0.25) (0.25) (0.11) (0.11) (0.08)
Number of Matches: Ireland 89,297 161,003 193,091 208,857 89,464 72,920 48,316
Match Rate: Ireland (0.39) (0.32) (0.27) (0.24) (0.09) (0.08) ( 0.05)
Number of Matches: Italy 38 84 542 55,676 101,264 85,874
Match Rate: Italy (0.02) (0.03) (0.05) (0.10) (0.14) (0.12)
Number of Matches: UK 26,838 61,315 100,971 143,078 94,911 84,103 61,989
Match Rate: UK (0.26) (0.30) (0.28) (0.25) (0.13) (0.12) (0.09)

Number of Matches: HPL and Census 12,438 47,947 87,860 198,898 318,014 284,414
Number of Matches: Germany 11,182 41,466 74,116 154,233 196,156 143,619
Match Rate: Germany (0.41) (0.33) (0.29) (0.23) (0.25) (0.17)
Number of Matches: UK 903 4,091 8,328 19,467 17,710 13,799
Match Rate: UK (0.27) (0.27) (0.22) (0.14) (0.13) (0.10)
Number of Matches: Italy 2 10 43 604 2,177 2,027
Match Rate: Italy (0.02) (0.04) (0.06) (0.15) (0.36) (0.30)
Number of Matches: Russia 4,904 49,705 45,468
Match Rate: Russia (0.19) (0.24) (0.16)

Number of Matches: Patent and Census 3,243 6,884 10,958 22,405 96,526 97,807 75,752
Number of Natives 2,501 4,715 6,827 133,543 67,140 67,480 57,233
Number of Foreign borns 742 2,169 4,131 9,051 29,386 30,327 18,519

Table 14: Number of Matches and Match Rate
Notes: This table shows the number of observations that were uniquely matched between dataset of interests
(HPL/CG/Patent) and census, and corresponding match rate by nationality over study period. As HPL
and CG observations finishes around 1914, we only link immigration records against census records up to
1920 and skip linking 1930 and 1940 census records at all. However, for patent and census linking, as patent
records are available for the 1930s and 1940s records also, we still match patent records against 1930 and
1940 demographic census records. Table for other years or nationality are available upon request.

B.1.2 Linking Immigrants from the Castle Garden Immigration Records to the
US Census

Our procedure to link immigrants appearing in the Castle Garden data to the Census uses
a procedure akin to the one described in Section B.1.1 above. First, we identify a set of
potential matches by insisting on similar first and last names (i.e. a Jaro-Winkler distance
of minimum 0.8), a maximum age difference of two years and a common nationality and
race. Then we identify unique matches by imposing the same three rules as above: stricter
last name similarity, stable marital status, and a gap between the departure year and the
immigration year gap of less than 3 years This procedure is again summarized in Table 13.

Table 14 shows the number of matches and the match rate between the Castle Garden
data and Population Census for different nationalities . German immigrants make up roughly
30-40% of the linked data between Castle Garden and the Census. Note that Germans
account for 20% of all immigrants in Castle Garden (i.e. their match rate is relatively high).
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In contrast, Table 14 shows that the match rate Irish and British immigrants is systematically
lower. We also see the rapid rise of Italian immigration at the turn of the century.

B.2 Linking Patent-Holding Inventors to the US Census

To link patents to individuals in the US Census, we rely on the information contained in
HistPat: the name of the patentee and the county where the patent was issued. To account
for the fact that the place where the patent was issued does not necessarily coincide with the
living location of the patentee, we harmonize the patent and Census data at the level State
Economic Areas (SEA).

We first take the entire patent data and block it first by the decade that a patent was
filed and within each decade by the SEA of each filing. We then link this to the appropriate
decade of the census for each SEA using the Jaro-Winkler distance of first and last name
between census records and patent inventor records. Again we identify the set of potential
matches by insisting on a Jaro-Winkler distance of at least 0.8. We also restrict attention to
individuals that were at least 16 years old at the time the patent was issued.

To then determine a unique match, we again use the same iterative procedure as above.
Specifically, we impose the first rule of a Jaro-Winkler distance to be at least 0.85. We also
restrict the patentee to be at most 80 years old at the time of patenting. Again, see Table 13
for a summary of this procedure.

C Evaluating the Quality of the Linked Data

In this section, we discuss the quality of our record linking algorithm and linked data. We
show 1) there are no systematic differences between matched and unmatched observations,
2) our record linking algorithm does not create a bias by over-representing some groups while
under-representing others.

C.1 Representativeness

We first compare the matched and unmatched individuals from Immigration records. Figures
13 and 14 show the relative age distribution of matched and unmatched observations from the
immigration records. For Figure 13 we take all males aged between 20 and 50 years at the
time of census who arrived in the last 10 years (based on the census year) from Castle Garden
Immigration Arrival records, and plot the relative age distribution of CG observations that
were uniquely linked to the census records in Light Blue, and plot the corresponding of CG
observations that were not linked to the census in Dark Blue. If a certain age group from the
CG records was more likely to be linked to the census than other groups, the relative age
distributions of the matched and unmatched would look different. However, respective age
distributions are not systematically different between the matched and unmatched.
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(a) 1860 (b) 1880

Notes: The above figures show the age distribution of Castle Garden Data that is uniquely linked to the
Census (Light Blue) against Castle Garden Data that is unmatched to the Census (Dark Blue). The left
figure plots for the 1860 data, and the right figure for the 1880 data. Figures for other years are available
upon request.

Figure 13: Age Distribution of the Matched and Unmatched (Castle Garden)

Figure 14 shows the same distributions for the Hamburg Passenger Lists. Again, we find
that the age distribution of matched individuals (shown in light blue) is very similar to the
one of the individuals that we are unable to match (dark blue).
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(a) 1910 (b) 1920

Notes: The above figures show the age distribution of Hamburg Passenger Lists Data that is uniquely linked
to the Census (Light Blue) against Hamburg Passenger Lists Data that is unmatched to the Census (Dark
Blue). The left figure plots for the 1910 data, and the right figure for the 1920 data. Figures for other years
are available upon request.

Figure 14: Age Distribution of the Matched and Unmatched (Hamburg Passenger Lists)

While the previous section looks at the age structure between the matched and unmatched,
this section analyzes if the ratio between the matched and unmatched systematically differ
by nationality.

Figure 15 shows that the match ratio (i.e. #matched
# unmatched

) from CG records does not vary
substantially across nationalities. To make this ratio comparable, as we did in previous
section, we again restrict observations to recent arrivals who arrived in the last 10 years at
the time of census, and to be 20-50 years old at the time of census. The left panel of Figure 15
shows the top five nationalities from CG records based on 1860 census. It shows that France,
Germany, Ireland, Switzerland and the UK were the top five immigrant-sending countries
between 1850 and 1860, and the match ratio differs across countries is approximately 0.1.
As the composition of immigrants change over time, the top immigrant-sending countries
also change. By 1900, immigration from UK and Ireland decreased in relative magnitude,
whereas Russia and Italy rose as one of the biggest immigrant-sending countries.

Figure 16 shows our match ratio from HPL records does not vary too much by nationality.
Again, we strict the observations to recent arrivals, aged between 20 and 50. It is noteworthy
that the match ratio varies over time for the same country. The most dramatic case is
Croatia/Serbia where the match ratio increased from 0.1 in 1910 to well over 0.3 in 1920.
For Russia the match ratio decreased from 0.2 to 0.15.

There are many reasons why the match ratio could differ by nationality — to enumerate
some, Anglicization of first and last names; popularity of common names; and composition of
immigrants (for example, if there are many Italian immigrants such as ‘‘23 years old Giovanni
Rossi from Italy’’ with similar age groups, common names and common characteristics such
as marital status); the number of immigrants who returned to their home countries (for
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example, if a certain nationality group was much more likely to return to their home countries
and therefore, we only see their Immigration Arrival records but do not see their presence in
the census records, the match ratio can be lower for such group).

(a) 1860 (b) 1900

Notes: The above figures show the ratio of (the number of observations matched to census/the number of
unmatched observations in Castle Garden). The top five nationalities are based on the count of immigrants’
birth place. The left figure plots for the 1860 data, and the right figure for the 1900 data. Figures for other
years are available upon request.

Figure 15: Ratio of the Matched and Unmatched (Castle Garden) by Nationality
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(a) 1910 (b) 1920

Notes: The above figures show the ratio of (the number of observations matched to census/the number of
unmatched observations in Hamburg Passenger Lists). The top five nationalities are based on the count
of immigrants’ birth place. The left figure plots for the 1910 data, and the right figure for the 1920 data.
Figures for other years are available upon request.

Figure 16: Ratio of the Matched and Unmatched (Hamburg Passenger Lists) by Nationality

C.2 Matching Patents to Immigrants and Natives

In Section 4 we showed that an important aspect of systematic differences in immigrants’
entrepreneurial human capital is the length of their stay in the US. A potential concern
could be that it might simply reflect a particular bias in our matching procedure: maybe
immigrants have more distinct names than the native population and hence we simply achieve
a higher match rate even though the actual innovation productivity might not differ.

To see that this concern is unlikely to be important, consider Figure 17. In the top row
we report the distribution of the length of last names for natives (left panel) and assimilated
immigrants (right panel). These distributions are quite similar, i.e. it is not the case the
immigrants have substantially longer names, which might be easier to find on the patent
records. In the bottom panel, we report the distribution of the Jaro-Winkler distances for
natives and immigrants. Again, if migrants and natives differed in the ease with which their
names could be matched, we would expect these distributions to be different. Figure 17,
however, shows that they are very similar.

C.3 Patent Matching Rates by Industry

In Table 15 we report the marginal distribution of patents across industries and our match
rate by industry for all decades. More than 80% of all patents between 1860 and 1920 are for
durable and non-durable goods. The match rate of our algorithm is very similar across years
but improves markedly over time. This is due to the fact the information on inventor names
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assimilated immigrants (right panel). In the bottom row we depict the distribution of the Jaro-Winkler
distances of the matches of natives (left panel) and assimilated immigrants (right panel).

Figure 17: Quality of Patent Matches: Natives vs. Immigrants

(i.e. Optical Character Recognition-based transcription quality) is much more complete in
the 20th century than it is in the 19th century.

D Data Processing

D.1 Data Harmonization: Hamburg Passenger Lists

The original information of the Hamburg Passenger Lists is in German and in a non-structured
format. To make this information operation we therefore had to translate, harmonize and
classify it. The three pieces of information we used are the the pre-migration occupation, the
final destination and the nationality.

Occupation (‘‘Beruf’’) We cleaned, translated, standardized and coded occupation
information from the Hamburg Passenger Listsfollowing the 1950 Census Bureau occupation
information classification system (‘‘OCC1950’’) and the Historical International Standard
classification of occupations (‘‘OCCHISCO’’) to enhance comparability across years. 53% of
HPL records have occupational responses and this information is almost always available for
working-age males. The most frequently appearing occupations are farm laborers, general
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Table 15: Matching Rates By Industry

Decade 1860-1879 1880-1899 1900-1909 1910-1919

Industry Total Matched rate Total Matched rate Total Matched rate Total Matched rate

Agriculture, Forestry, and Fishing 0.09 0.12 0.05 0.07 0.04 0.60 0.04 0.45
Mining and Construction 0.02 0.13 0.02 0.09 0.02 0.62 0.02 0.51
Durable Goods 0.66 0.13 0.69 0.08 0.71 0.61 0.72 0.48
Nondurable Goods 0.16 0.12 0.15 0.08 0.13 0.57 0.13 0.46
Transportation 0.02 0.13 0.02 0.08 0.02 0.61 0.02 0.50
Telecommunication 0.00 0.10 0.01 0.06 0.01 0.64 0.01 0.57
Utilities and Sanitary Services 0.04 0.13 0.05 0.08 0.05 0.62 0.05 0.49
Entertainment and Recreation 0.00 0.09 0.01 0.06 0.01 0.61 0.01 0.51
Other 0.00 0.00 0.69 0.00 0.72

laborers, managers, followed by manufacturing workers such as tailors, shoemakers, and
cabinet makers.

Destinations (‘‘Zielort’’) We translated the ship route and final destination information
to identify passengers who were headed to the United States. The majority of passengers
departing from the port of Hamburg were headed to North America, however, still some
passengers were headed to South America (such as Buenos Aires and Rio de Janeiro) and
other parts of Europe.

Nationality (‘‘Nationalitaet’’) We rely on the information on immigrants’ nationality
to match immigration records to the US Census. This information is only reported in the
Hamburg Passenger List starting in 1898. For al records prior to 1898,

we impute this information. Specifically, we use a name-based nationality and ethnicity
classification tool called ‘‘NamePrism’’ (which is also used by Diamond et al. (2019)), which
predicts an individual’s nationality and ethnicity based on their first and last name.

We also use another algorithm to impute gender based on first name (Blevins and Mullen
(2015)). As these tools also provide corresponding ‘‘reliability’’ measures in the form of
probabilities, we restrict our analysis to observations where such ‘‘success probabilities’’ are
at least 50%.

D.2 Geography Harmonization

We merge all the aforementioned datasets at a unified spatial level. As counties and state
boundaries have changed over time, we take the county shape files from National Historical
Geographic Information System (Manson et al. (2019)) and create a time-consistent crosswalk
of counties in constant borders.

D.3 Pre-Migration Occupations

Both the Castle Garden data and Hamburg Passenger Lists contain information on the
occupation the respective immigrant had before entering the United States. We refer to such
occupations as pre-migration occupation. To make this information, which in the raw data is
simple a string variable, workable we aimed to harmonize these pre-immigration occupations
to the census occupation codes.
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To do so we exploit the lexical database ‘‘Wordnet’’, which is part of the NLTK library
in Python.18 Wordnet groups words into a set of synonyms called synsets. It is basically a
network of related words based on synonyms. Wordnet also offers different measures of how
these words are related, one of which is a ’word similarity’ measure. It is based on the depth
of the Wordnet taxonomy of the two words and their lowest common subsumer. We use this
structure to harmonize the different pre-migration occupations of the Castle Garden Data
into a set of roughly 300 groups.19 We perform the same step for the census occupations.
Given these two lists, the list of Castle Garden occupations and occupations from the Census ,
we then iterate over the the first list to find the census occupation with the highest similarity
score.

In Figure 18 and Table 16 we provide two examples of our procedure. Figure 18 shows
the hierarchical structure of four occupations - farmer, watchmaker, baker and merchant - in
Wordnet. Consider for example a watchmaker. A watchmaker is a part of all ‘‘makers’’ as
they share a large set of synonyms. ‘‘Makers’’ in turn are a subset of ‘‘creators’’, a property
which they share with farmers. Similarly, bakers and the broader class of merchants are a
subset of business persons and capitalists.

Person

Creator Capitalist… …

Business personFarmer Maker

Watchmaker Merchant

Baker

Notes: The figure shows an example of four occupations (farmer, watchmaker, baker and merchant) and
their relation Wordnet.

Figure 18: The Hierarchical Structure in Wordnet

In Table 16 we report the mapping from the reported occupations in the Castle Garden
Data (left column) to the eventual occupations in the census (right column). Via Wordnet
we are able to deduce the class ‘‘repairmen’’ for the ‘‘watch repairer’’ or the general class
‘‘housekeeper’’ to the kitchen maid. Table 16 also shows what could go wrong: both the piano
maker and the pasta maker are classified as ‘‘makers’’, which find their closest match in the
census category ‘‘tool maker’’. While this might be reasonable for the artisan of musical

18https://wordnet.princeton.edu
19If we cannot find a word in Wordnet, we split the occupation into sub-occupations and search for these,

eg ‘‘taxi driver’’ becomes ‘‘taxi’’ and ‘‘driver’’. If still neither exists, we use ‘‘wordninja’’ (another python
library) that splits words without white spaces, eg ‘‘breadbaker’’ becomes ‘‘bread’’ and ‘‘baker’’. While
iterating over the occupations, we always make sure to only use words that mean what we are looking for,
eg in the above example of ‘‘taxi’’ and ‘‘driver’’, we are obviously interested in the word ‘‘driver’’ and not
‘‘taxi’’. We do so by requiring that each word has a person as a hypernym.
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instruments, the pasta maker (most likely an Italian immigrant) should arguably be assigned
the occupational code of a baker.

Castle Garden Occupation Class in Wordnet Census occupation
MIDWIFE midwife Midwives
PIANO MAKER/MANUFACTURER maker Tool makers
PASTA MAKER maker Tool makers
SCULPTOR artist Artists and art teachers
WATCH REPAIRER repairman Mechanics and repairmen
KITCHEN MAID housekeeper Housekeepers, private household

Table 16: Classification of Occupations: Example

D.4 Measuring the Novelty of Patents

To provide direct evidence for the importance of human capital, we aim to measure whether
the patents by immigrants are systematically different. To do so, we exploit the patent
descriptions using the data that construct (See Section A.3 for patent-data construction
procedure and details). As in Kelly et al. (2020) we measure the similarity of patents relative
to previous patents using textual analysis.

More specifically, we identify terms that are most diagnostic of a document’s topical
content through the ‘‘Term Frequency Backward Inverse Document Frequency’’ (TFBDIF )
transformation of word counts. Consider a word w and patent document d. We then calculate:

TFIDFdw = TFdw ×BIDFw.

Here TFdw is the relative frequency of word w within the patent document d

TFdw = cdw/
∑
k

cdk

and the Backward Inverse Document Frequency BIDFw measures the log frequency of patent
documents containing the term w in any patent granted prior to patent d, i.e.

BIDFw = ln

(
Number of documents before d

1 + Number of documents before d containing w

)
.

Hence, BIDFw captures how novel (‘‘ground-breaking’’) the word w in patent d was relative
to the prior stock of patents that existed.

Hence, TFIDFdw , the product of these two, measures the importance of the word w in
the given document d. Words that appear infrequently (low TF ) or common terms that
appear in many document (high BIDF ) tends to have lower TFBIDF . On the other hand,
a term that appear intensively in a particular patent document, but do not in most other
previous documents could be an indication that the term w was the novel element of the
patent.

Finally, we construct the similarity between the patent pair (i, j) in the following way.
For both patents, we construct TFBIDF for each term w in patent i

TFBIDFw,i,t = TFw,i ×BIDFw,t, where t ≡ min(i, j)
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and put in in a vector Vd of dimension which is the number of unique words in all documents
(of which many of them are 0s). After each TFBIDF vector is normalized to have unit length,
we calculate the similarity between two vectors (‘‘patents’’) as

ρi,j = Vi · Vj.

If the two patents iand j use the identical set of words with same proportion, ρi,j will take
the similarity value of 1. In contrast, if the two patents do not have any overlapping words,
ρi,j will take the value of 0. We therefore use the measure

nij = 1− ρij

as our measure of patent novelty.

E Additional Empirical Results

In this section we report some additional empirical results to complement our empirical
analysis in the main text.

E.1 Natives and Immigrants in the Census

In Table 17 we provide additional evidence on the different demographic make-up between
natives and immigrants. The differences are stark. The foreign born population is much
more urbanized and hence much less likely to work in agriculture. The age distribution is
also strikingly different as children are less likely to immigrate. Finally, the last rows show
the changing nationality decomposition of the foreign-born population. While almost a third
of the immigrant population was of German descent in 1880, by 1920, Italians have emerged
as the dominant nationality of the foreign born.
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E.2 The Intensive Margin of Patenting for Natives and Immi-
grants

In Section 4 we documented that immigrants, in particular assimilated immigrants, are more
likely to engage in patenting than natives. In Figure 19 we show the same pattern for the
intensive margin by focusing on the distribution of the number of patents conditional on
patenting. Like for the extensive margin, foreign born individuals that lived in the US for
more than 10 years are particularly prolific as their distribution dominates the one of natives
and recent immigrants in the first-order-stochastic dominance sense.
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Notes: The figure shows the intensive margin of patenting for natives, assimilated immigrants, that have
been in the US for more than 10 years, and recent immigrants, i.e. immigrants that arrived within the last
10 years. The data refers to the year 1910.

Figure 19: Patent Activity by Natives and Immigrants

E.3 Construction of the Instrument for Specification (24)

In this section we describe the construction of our instrumental variable used in the last two
columns of Table 9 in more detail. We follow the ‘shift-share’ literature and construct an
instrument for immigrant inflows (Altonji and Card (1991); Card (2001)). The motivation is
that immigrants are likely to settle in places where their ancestors were living in the past.
We construct predicted immigrant inflows from the time series of actual immigrant inflows
from different origin countries, interacted with the distribution of ancestors across space in
the previous period. More formally, let I to be the immigrant inflows of origin country o at
time t. We can construct our instrument in region r at time t, Cardtr as

IVrt =
∑
o

Aort−1
Aot−1

Iot, (32)
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Notes: The figure displays a binscatter plot between the predicted (log) number of immigrants and the actual
(log) immigrants from Germany (left panel) and Italy (right panel). We calculate the predicted number of
immigrants according to (32).

Figure 20: Predicted versus actual immigrant inflows

where At−1
or

At−1
o

is the share of ancestors in region r of an origin country o in the previous

period.20 Intuitively, immigrant inflows from country o at time t are allocated according to

the distribution of their ancestors across space at time t-1.21 Figure 20 shows predicted versus

actual inflows in year 1910 for Germany and Italy, two of the largest immigrant countries at

that time. Actual and predicted inflows are closely aligned along the 45 degree line with the

slope for Germany being slightly more precisely estimated than for Italy. We find similar

positive and strong relationships for the other origin countries in our analysis.

The first stage of our regression is

I tr
Poptr

= γ1 ·
IVrt

P̂ op
t

r

+ γ2 · Ctrlstr + εtr, (33)

where Poptr is the population in region r at time t, Cardtr is defined as in (32) and Ctrlstr are

the control variables in region r at time t. Importantly, P̂ op
t

r is predicted population and
defined as

P̂ op
t

r = Popt−1r + IVrt (34)

We calculate predicted population ˆPoptr for the same reason we implement an IV identification
strategy in the first place. In particular, an endogenous choice by the immigrants of where to
settle inevitably implies that population itself is endogenous. Therefore, an analysis based
on the first stage in (33) without accounting for this endogeneity problem would not be
valid. Moreover, since in (34) only past population is incorporated, any contemporaneous

population related forces will not impact predicted population ˆPoptr.

20Our panel data is unbalanced. To create these ancestry shares, we have to rely on the shares from
previous periods, if they don’t exist in t-1.

21Our construction of the instrument abstracts from mortality, which in general could be specific to origin
country o or region r.
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We estimate the same regression specifications that we used for the OLS regressions in
Table 9. Table 18 shows the first stage of this regression as in (33). For all specifications
the coefficients remain significantly positive and precisely estimated. The t-statistics (in
brackets) suggest that there is no weak IV problem. Moreover, specification (II) and (IV) are
estimated at the county-year level, instead of the county-industry-year level. Figure 21 plots
the predicted values from column VI of table 18 and shows that our instrument successfully
predicts actual census inflow shares.

Share of immigrants
I II III IV V VI

Pred. Share of Immigrantsrt 0.509∗∗∗ 0.435∗∗∗ 0.220∗∗∗ 0.224∗∗∗ 0.220∗∗∗ 0.246∗∗∗

(18.27) (22.37) (9.19) (13.13) (9.13) (8.02)
(ln) Populationrt 0.00398∗ 0.00184 0.00415∗∗ 0.00278

(1.90) (1.21) (1.97) (1.20)
Urban sharert 0.0194∗∗∗ 0.00987∗∗ 0.0192∗∗∗ 0.0210∗∗∗

(3.44) (2.23) (3.41) (3.20)
(ln) Patentsrit−1 -0.000184

(-1.45)
R2 0.482 0.511 0.857 0.818 0.858 0.862
N 102093 9594 102010 9389 98728 72555
County FE no no yes yes yes yes
Y ear FE no no yes yes yes yes
Industry FE no no no no yes yes

Notes: t-statistic in parentheses. The predicted share of immigrants are people who are predicted to have

immigrated within the last ten years for a given census year over predicted population. Year 1900-1930.

Standard errors clustered by county.

Table 18: First Stage in shares and exog. population

E.3.1 An Alternative IV strategy

The strategy based on (32) guards against the possible critique that migrants might settle in
prosperous and innovative locations. However, the main issue with this approach is that not
only where migrants settle now, but also where migrants have settled in the distant past,
could potentially be correlated with unobserved factors that also affect innovation. This

would lead to endogenous ancestry shares, At−1
or

Aot−1
, and hence an invalid IV.

In recent paper Burchardi et al. (2020) propose a modified version of (32), where not the
entire ancestry distribution is used to predict future immigration, but only an exogenous
component. More precisely, these propose to use

IV Ex
rt =

∑
o

Âort−1

Âot−1
I to, (35)

where the inflow of immigrants from origin country o, Iot, is ‘‘distributed’’ according to the
distribution of the exogenous pre-existing ancestry Âort−1. Such exogenous ancestors, Âort−1,
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Note: Actual immigrant inflow shares are from the census and defined as  Ir
t / Popr

t. Predicted immigrant inflow shares
are defined as the predicted values from the first stage regression in table 14 (column VI).

First stage: Actual and predicted inflow shares

Figure 21: First stage in (exogenous) shares

evolve according to

Âtor =
t∑

τ=1900

β̂τ
Iτr
Iτ
Iτo + Ât−1or (36)

where β̂τ is the coefficient from the regression

Ator =
t∑

τ=1900

βτ
Iτr
Iτ
Iτo + b2 · Ctrlstor + δto + δtr + δt + εtor. (37)

Hence, we first run the regression in (37) and identify βτ from the relationship between the
stock ancestors of origin o in region r and the aggregate inflow of immigrants of origin o, the
the share of all immigrants heading towards region r. Hence, the stock Ator is the combination
of an origin-specific push factor (Ioτ ) and a region specific pull factor (Iτr /I

τ ). Intuitively:
(37) leverages the fact that we expect lots of Italians in region r, if during the time when lots
of Italians were coming to the US, lots of immigrants (or all origins) were setting line in region
r. It is in this sense that At

or suffers less from the concern that a particular region might
attracts particular immigrants, who might share common aspects of comparative advantage.
In Figure 22 we show the distribution of exogenous ancestries and actual ancestries and their
correlation.
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Figure 22: The predictive power of exogenous ancestry
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