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Abstract

We suggest a model for long memory in time series that amounts to harmonically

weighting short memory processes,
∑

j xt−j/(j + 1). A nonstandard rate of conver-

gence is required to establish a Gaussian functional central limit theorem. Further,

we study the asymptotic least squares theory when harmonically weighted processes

are regressed on each other. The regression estimators converge to Gaussian lim-

its upon the conventional normalization with square root of the sample size, and

standard testing procedures apply. Harmonically weighted processes do not allow

- or require - to choose a memory parameter. Nevertheless, they may well be able

to capture dynamics that have been modelled by fractional integration in the past,

and the conceptual simplicity of the new model may turn out to be a worthwhile

advantage in practice. The harmonic inverse transformation that removes this kind

of long memory is also developed. We successfully apply the procedure to monthly

U.S. in�ation, and provide simulation evidence that fractional integration of order d

is well captured by harmonic weighting over a relevant range of d in �nite samples.
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1 Introduction

Much of the economic and �nancial literature equates long memory in time series with

the model of fractional integration [FI] popularized by Granger and Joyeux (1980) and

Hosking (1981). Fractional integration of order d < 1/2 implies autocovariances γ(h)

converging to zero at rate h2d−1; hence, they are not (absolutely) summable as long as

d > 0. In the frequency domain this translates into a pole of order λ−2d as the frequency

λ approaches the origin. Such a feature has been described by Granger (1966) as �typical

spectral shape of an economic variable�. Using the fractionally integrated model, Geweke

and Porter-Hudak (1983) revealed long memory in di�erent U.S. price indices. Further

independent work on long memory in in�ation rates was by Delgado and Robinson (1994)

for Spain, and by Hassler and Wolters (1995) and Baillie, Chung, and Tieslau (1996) for

international evidence, followed by abundant evidence in e.g. Franses and Ooms (1997),

Baum, Barkoulas, and Caglayan (1999), Franses, Ooms, and Bos (1999), Hsu (2005),

Kumar and Okimoto (2007), and Martins and Rodrigues (2014). Similarly in the �eld

of �nance, long memory in realized volatility is sometimes considered to be a stylized

fact since the papers by Andersen, Bollerslev, Diebold, and Ebens (2001), Andersen,

Bollerslev, Diebold, and Labys (2003), see also Maasoumi and McAleer (2008) and the

recent evidence by Hassler, Rodrigues, and Rubia (2016). Most of these papers assume

explicitly or implicitly fractional integration to capture and detect long memory. With

d ∈ (0, 1/2), fractional integration o�ers an overwhelming �exibility in modelling the

strength of memory under stationarity, and the extension to the nonstationarity region is

straightforward. While �exibility is a virtue on the one hand, it is a burden at the same

time: When regressing two fractionally integrated series on each other, we have to ensure

that their orders of integration are equal in order to avoid unbalanced regressions, and

the issue of fractional cointegration comes in, see Granger (1981). Even if both orders of

integration are equal spurious regression (in the sense of diverging t-statistics) may occur,

see Tsay and Chung (2000). This triggered a huge literature on the estimation and testing

of d, see e.g. the recent books by Giraitis, Koul, and Surgailis (2012) and Beran, Feng,

Ghosh, and Kulik (2013).

Despite ample evidence in favour of long memory, it has been argued that it does not

necessarily have to result from fractional integration. This strand of literature has been

labelled �spurious long memory� since Lobato and Savin (1998), and many authors have

contributed, see e.g. Diebold and Inoue (2001), Granger and Hyung (2004), Ohanissian,

Russell, and Tsay (2008), Perron and Qu (2010) and Qu (2011). With harmonic weighting

we suggest yet another model for long memory, which is extremely simple and falls into

the class of linear models just like fractional integration. Similarly, Corsi (2009) proposed

a simple model for long memory in realized volatility. But we go one step beyond and
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discuss the regression of harmonically weighted processes, too. Notwithstanding the long

memory, the asymptotic theory remains standard, asymptotic χ2 tests apply. Further, we

argue that harmonically weighted processes are in �nite samples almost observationally

equivalent to fractionally integrated ones over a wide range of relevant values of d. Hence,

the applied researcher may allow long memory series of this persistence to enter his or her

stationary regressions without having to worry about nonstandard inference.

Let {εt} denote a sequence of white noise [WN] with E(εt) = 0. Harmonically weighted

noise,
∑t−1

j=1 j
−1εt−j, shows up in the derivative of the log-likelihood function of Gaussian

fractionally integrated noise, see Tanaka (1999, eq. (40)), and it was used to construct a

Lagrange Multiplier test for fractional integration. With the same purpose, Demetrescu,

Kuzin, and Hassler (2008) considered more generally the processes

y+t−1 =
t−1∑
j=1

xt−j
j

and yt−1 =
∞∑
j=1

xt−j
j

,

where {y+t−1}t=2,...,T is the �nite sample counterpart of {yt−1}t∈Z, where Z denotes the set

of all integers. The �ltered process {xt} is assumed to be a stationary regular process

with absolutely summable moving average coe�cients and positive spectrum. Demetrescu

et al. (2008, Lemma 4) showed that {yt−1} possesses a sequence of square summable

autocovariances. Without squaring the autocovariances are not summable, which was

shown for the particular case of harmonically weighted noise by Pesaran (2015, p. 347).

In fact, it is not hard to show that the autocovariance at lag h decays at rate (lnh)/h in

case of harmonically weighted noise, see eq. (6) below.

Except for the above results, little seems to be known about harmonically weighted pro-

cesses [HWP]. Here, we discuss their persistence and long memory properties that di�er

from the well known features under fractional integration. Their persistence and long

memory are characterized by a pole in the spectrum at the origin that is of order ln2 λ

for λ→ 0, see Proposition 1. Consequently, it follows from Proposition 2 that the sample

mean converges only with variance (ln2 T )/T , such that the true ensemble mean is harder

to estimate than in the case of standard stationary processes (integrated of order zero).

Further, we discuss the inversion of the �lter with harmonic weights, called harmonic

inverse transformation [HIT]. When applying the HIT to some data with a spectral pole

of order ln2 λ, then this transformation removes the pole. At the same time a mean dif-

ferent from zero will be e�ectively removed without having to be estimated. Processes

like {yt−1} de�ned above are not only of theoretical interest, showing up in the Lagrange

Multiplier test for fractional integration. They are also interesting for modelling empirical

series, and we demonstrate the usefulness and appropriateness of the HIT with monthly

U.S. in�ation data that have been modelled previously by means of fractional integration;
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see Figure 2 below.

The rest of the paper is organized as follows. Section 2 becomes precise on the assumptions

and contains the properties of HWP in the time and frequency domains. The third sec-

tion presents the asymptotic theory for partial sums of HWP, with a nonstandard central

limit theorem [CLT] as special case. Asymptotic least squares theory when harmonically

weighted processes are regressed on each other is given in Section 4. The harmonic inverse

transformation is introduced and discussed in Section 5. Section 6 compares fractional

di�erencing with the harmonic inverse transformation for monthly U.S. in�ation data.

Section 7 compares systematically the properties of HWP with the more common long

memory model, namely fractional integration, and discusses the possibility (and di�-

culty) to discriminate between the two of them. The �nal section o�ers some conclusions.

Mathematical proofs are relegated to the Appendix.

A �nal word on notation: Throughout this paper, ⇒ stands for weak convergence as the

sample size T diverges,
D→ represents convergence in distribution, and bxc denotes the

largest integer smaller than or equal to x ≥ 0, x ∈ R. Further, (probabilistic) Landau

symbols O(·) (and Op(·)) have their usual meaning, and ∼ denotes asymptotic equivalence

of two sequences or functions.

2 Properties of HWP

In terms of the usual lag operator L we de�ne the harmonically weighted �lter

h(L) = 1 +
L

2
+
L2

3
+ · · ·

given by the formal expansion of ln(1− L):

h(L) := − ln(1− L)

L
=
∞∑
j=0

Lj

j + 1
. (1)

This de�nes a harmonically weighted process, HWP, as follows.

Assumption 1 Let

yt = µ+ h(L)xt , t ∈ Z ,

where {xt} is a stationary process with mean zero and

xt = c(L)εt =
∞∑
j=0

cjεt−j , εt ∼ WN (0, σ2) , i.e. E(εt εt+h) =

{
σ2 , h = 0

0 , h 6= 0
,
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and with (c0 = 1)
∞∑
j=0

j |cj| <∞ and c(1) =
∞∑
j=0

cj 6= 0 . (2)

The process {xt} behind Assumption 1 is sometimes called integrated or order zero, I(0).

The restriction of one-summability,
∑∞

j=0 j |cj| < ∞, is a rather weak and widely used

assumption since Phillips and Solo (1992). All stationary and invertible autoregressive

moving average processes [ARMA] meet (2), since cj is geometrically bounded in the

ARMA case.

Obviously, {yt} is conformable with the de�nition from the introduction, except for the

expectation µ. The �nite analogue may be written by means of the indicator function,

1(t>0)(t) =

{
1 , t > 0

0 , else
.

We then have h+ and {y+t } de�ned as follows:

y+t := µ+ h+(L)xt := µ+ h(L)xt1(t>0)(t) = µ+
t−1∑
j=0

xt−j
j + 1

, t = 1, . . . , T . (3)

For the rest of the exposition we focus on {yt} from Assumption 1, since Demetrescu et al.

(2008) showed in the proof of their Lemma 2 that

yt − y+t = Op

(
1√
t

)
. (4)

We now give properties of {yt} in terms of {xt} with autocovariances γx and spectrum fx:

γx(h) = σ2

∞∑
j=0

cjcj+h , h = 0, 1, . . . , and fx(λ) =
σ2

2π

∣∣∣∣∣
∞∑
j=0

cje
ijλ

∣∣∣∣∣
2

, i2 = −1 .

Correspondingly, fy and γy stand for the spectrum and the autocovariances of {yt}, re-
spectively. The moving average representation of the process is given by convolution of

h(L) and c(L),

yt =
∞∑
j=0

bjεt−j , bj =

j∑
k=0

ck
j + 1− k

, (5)

where {εt} is the white noise from Assumption 1.

Proposition 1. The harmonically weighted process {yt} from Assumption 1 is stationary

with mean µ and
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a) moving average coe�cients

bj ∼
∑∞

k=0 ck
j

=
c(1)

j
, j →∞ ;

b) spectrum

fy(λ) =

[
ln2

(
2 sin

λ

2

)
+

(
π − λ

2

)2
]
fx(λ) , λ > 0 ,

∼ ln2 (λ) fx(0) , λ→ 0 ;

c) autocovariances

γy(h) ∼ 2πfx(0)
lnh

h
, h→∞ .

Proof. See Appendix.

Remark 1 Let us consider the special case of harmonically weighted noise, where xt = εt

and 2πfx(0) = σ2. It is straightforward to show in this case that

γy(0) = σ2

∞∑
j=0

(j + 1)−2 = σ2π
2

6
,

γy(h) = σ2

∞∑
j=0

1

(j + 1) (j + 1 + h)
= σ2 1

h

h∑
j=1

1

j
. (6)

For the general HW process, we have a spectral singularity of order ln2 (λ) at the origin.

This re�ects that the sum over the Wold coe�cients diverges at logarithmic rate:

lim
J→∞

1

ln J

J∑
j=0

bj = c(1) .

In that sense, the HW process is strongly persistent. Further, it displays long memory

since
H∑
h=0

|γy(h)| → ∞ as H →∞ .

This persistence and this degree of long memory are, however, not as strong as under the

assumption of fractional integration [FI]. To make this statement precise, we brie�y recap

the model of FI. It relies on the fractional integration operator with the usual binomial
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expansion:

(1− L)−d =
∞∑
j=0

(
−d
j

)
(−L)j.

We now de�ne fractionally integrated processes, for short zt ∼ I(d), often called of type

I since the work by Marinucci and Robinson (1999).

Assumption 2 Let

zt = µ+ (1− L)−dxt , t ∈ Z , 0 < d <
1

2
,

where {xt} is from Assumption 1.

By convolution it holds that

zt = µ+
∞∑
j=0

βjεt−j ,

where {εt} is from Assumption 1. The impulse responses βj vanish at rate jd−1:

βj ∼
∑∞

k=0 ck
Γ(d)

jd−1 , j →∞ .

From this it further follows that

fz(λ) ∼ λ−2d fx(0) , λ→ 0 ,

γz(h) ∼ C h2d−1 , h→∞ ,

where C = 2πfx(0)Γ(1− 2d)/(Γ(d)Γ(1− d)). Consequently, we �nd that the HW process

has theoretically less memory and persistence than any FI process with positive d:

lim
j→∞

bj
βj

= 0 , lim
λ→0

fy(λ)

fz(λ)
= 0 , lim

h→∞

γy(h)

γz(h)
= 0 , d > 0 . (7)

In �nite samples, however, matters may be di�erent, see Section 7 below.

3 (Functional) Central Limit Theorem

We now turn to large sample properties of the sample mean of HWP. We obtain the

behavior of the variance of cumulated HWP, which is used to establish a functional central

limit theorem [FCLT].
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Proposition 2. Let us maintain Assumption 1, where {εt} is a martingale di�erence

sequence with E (ε2t ) = σ2 and E (|εt|p) < ∞ for some p > 2. It is further assumed to

be either strictly stationary and ergodic or to satisfy Abadir, Distaso, Giraitis, and Koul

(2014, Ass. 2.1). It then holds as T →∞

a) that

Var
(∑T

t=1 yt

)
T ln2 T

→ 2πfx(0) ,

b) and that ∑brT c
t=1 (yt − µ)√
T lnT

⇒
√

2πfx(0)W (r) ,

where W is a standard Wiener process, 0 ≤ r ≤ 1.

Proof. See Appendix.

Our proof of Proposition 2 b) relies on Abadir et al. (2014). Hence, we maintain their

assumptions. Note that Abadir et al. (2014, Ass. 2.1) allow for conditional heteroskedas-

ticity meeting certain requirements with respect to conditional moments, see also the

discussion in Abadir et al. (2014, Sect. 4.1). For r = 1, we have the following central

limit theorem for y = T−1
∑

t yt,

√
T

(y − µ)

lnT
=

∑T
t=1(yt − µ)√
T lnT

D→ N (0, 2πfx(0)) .

Although Var(y) converges to zero with T , it does so more slowly than in the standard

case of absolutely summable processes like {xt} characterized in Assumption 1:

√
T (x− 0) =

∑T
t=1 xt√
T

D→ N (0, 2πfx(0)) .

At the same time, y converges faster than in case of FI with long memory. Let z be

the sample mean of a processes satisfying Assumption 2. For I(d) processes we know

from Abadir et al. (2014, Cor. 4.1) that limiting normality arises when normalizing with

T−1/2+d. Consequently, by Proposition 2:

Var(y)

Var(z)
= Op

(
ln2 T

T 2d

)
→ 0 , d > 0 .

Now, we brie�y turn to the issue of �nite sample e�ciency of y. Let µ̃ denote the

generalized least squares [GLS] estimator of µ under Assumption 1, i.e. the best linear
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Figure 1: Var(µ̃)/Var(y)

unbiased estimator. We now consider an example to quantify potential e�ciency gains

beyond y. Assume xt = εt with known σ2, such that {yt} is harmonically weighted noise.

With 1 denoting a T vector of ones, we have

Var(µ̃)

Var(y)
=

T 2

1′Ω1 · 1′Ω−11
,

where Ω contains ωi,i+h = γy(h)/σ2 with γy(h) being from Remark 1. In Figure 1 we

evaluate Var(µ̃)/Var(y) for T ranging from 50 up to 2,000. It is obvious that the e�ciency

gains of µ̃ relative to y are very small in larger samples. The estimation of µ is inevitably

plagued by the strong persistence or long memory of HWP resulting in the slow rate of

convergence observed in Proposition 2.

From Proposition 2 it follows that HW processes fall into a class that has been charac-

terized recently by Berenguer-Rico and Gonzalo (2014). Let L(x) be slowly varying at

in�nity in Karamata's sense, L(cx)/L(x)→ 1 as x→∞ for all c > 0. Then, according

to Berenguer-Rico and Gonzalo (2014), a process {ξt} is summable of order δ, if δ is the

minimum number such that

L(T )

T δ
√
T

T∑
t=1

(ξt − µ) = Op(1) .

Since 1/ lnT is slowly varying at in�nity, Proposition 2 implies that the HWP {yt} is
summable of order δ = 0 in this sense. At the same time it is worth repeating that the

HWP is not integrated of order 0 (by Proposition 1).
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4 Regression Results

Notwithstanding the nonstandard rate of convergence found in Proposition 2, we will be

able to establish standard regression results for harmonically weighted series under ap-

propriate error assumptions. Let the vector of regressors, rt, contain a constant intercept

and K harmonically weighted regressors,

rt =


1

r1,t
...

rK,t

 =


1

µ1

...

µK

+ h(L)


0

x1,t
...

xK,t

 , (8)

where the stochastic component is x′t = (x1,t, . . . , xK,t). The maintained single equation

regression model becomes (t = 1, . . . , T )

yt = β0 +
K∑
k=1

βkrk,t = β′rt + εt , β′ = (β0, β1, . . . , βK) . (9)

The stochastic assumptions are as follows.

Assumption 3 Let E(xt) = 0 and let further hold

a) that {(εt,x′t)′} is a strictly stationary and ergodic vector;

b) that

E(εt|rt, εt−1, rt−1, εt−2, rt−2, . . .) = 0 , 0 < E(ε2t |rt) = σ2 <∞ ;

c) that the matrix Σr = E(rtr
′
t) is �nite and positive de�nite.

Now, consider the ordinary least squares [OLS] regression,

yt = β̂′rt + ε̂t , t = 1, . . . , T .

Note that Assumption 3 is standard when maintaining a stationary regression model.

It guarantees that {εt} and {rtεt} are both strictly stationary and ergodic martingale

di�erence sequences [mds] with Var(εt) = σ2 and Cov(rtεt) = Σrσ
2. Hence, we are able

to prove the following result.

Proposition 3. Let model (8) with (9) hold true. Under Assumption 3 it follows that

√
T (β̂ − β)

D→ N
(
0, Σ−1r σ2

)
,
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σ̂2 =
1

T

T∑
t=1

ε̂2t
p→ σ2 , T

(
T∑
t=1

rtr
′
t

)−1
p→ Σ−1r ,

as T →∞.

Proof. See Appendix.

Remark 2 It follows that standard inference applies: the usual t statistics and Wald

statistics result in limiting standard normal and χ2 distributions under the respective null

hypotheses. Further, the Durbin-Watson statistic converges to 2, while the coe�cient of

determination obviously tends to 1− σ2/Var(yt).

Remark 3 It is straightforward to extend Proposition 3 to allow for stationary regressors

that are not harmonically weighted. Assume instead of (8) that we have H harmonically

weighted regressors and K −H further regressors without long memory (0 ≤ H ≤ K)

rt =



1

µ1

...

µH

µH+1

...

µK


+



0

h(L)x1,t
...

h(L)xH,t

xH+1,t

...

xK,t


. (10)

Then Proposition 3 continues to hold. Further, the regressors may contain lagged endoge-

nous variables as long as the regression model (9) remains stable.

Next, we present computer experimental evidence on tests relying on Proposition 3. We

report the frequency of rejections of a true null hypothesis at the 5% level from 10,000

replications. We consider two data generating processes [DGPs]. The respective regressors

are

DGP1: rt =

 1

0

0

+

 0

h(L)x1,t

h(L)x2,t

 , DGP2: rt =

 1

0

0

+

 0

h(L)x1,t

x2,t

 , (11)

with

yt = β′rt + εt , β′ = (1, 1, 1) ,

 εt

x1,t

x2,t

 ∼ N (0, I3) . (12)
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Table 1: Experimental size for DGP1 at 5%

h(L) h+(L)
T t1 t2 2F1,2 t1 t2 2F
100 5.18 5.14 5.18 5.20 5.36 5.59
250 5.07 4.79 4.78 5.47 5.44 5.43
500 5.01 4.66 5.02 4.73 5.42 5.00
1000 5.11 5.03 5.17 5.20 4.72 4.85
5000 4.90 5.08 4.87 4.93 5.05 5.13

Table 2: Experimental size for DGP2 at 5%

h(L) h+(L)
T t1 t2 2F1,2 t1 t2 2F
100 5.27 5.69 5.52 5.07 5.25 5.58
250 5.31 4.99 5.49 4.89 5.16 5.14
500 4.96 4.50 4.95 5.04 5.03 5.17
1000 5.11 5.23 5.19 5.46 4.59 4.95
5000 4.83 5.14 5.08 5.01 4.78 5.04

In the columns labelled by h(L) in Table 1 and 2, we truncated the in�nite �lter:

h(L)xk,t ≈
1,000+t−1∑

j=0

1

j + 1
xk,t−j .

In the last three columns labelled by h+(L), we worked with the �nite �lter:

h+(L)xk,t =
t−1∑
j=0

1

j + 1
xk,t−j .

The test statistics are the standard t statistics t1 and t2 when testing individually for

β1 = 1 and β2 = 1, respectively, and 2F is twice the standard F statistic testing for

β1 = β2 = 1 jointly, where the latter is compared with quantiles from χ2(2).

First, we observe that the experimental size of the asymptotic tests is close to the nominal

one already for T = 100. Second, we �nd that the asymptotic theory established for h(L)

in Proposition 3 works equally well for h+(L). Third, Table 2 supports Remark 2: The

size properties under DGP1 (both regressors are harmonically weighted) are very similar

to the case of DGP2, where only one regressor is harmonically weighted. For robustness

checks we considered further setups, replacing β′ = (1, 1, 1) by β′ = (1, 1, 0) and allowing

for correlation between the regressors; this leaves the �gures essentially unchanged, details
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are not reported here but available upon request.

It is worth noting that Proposition 3 holds for β = 0, which amounts to the regression

of white noise εt on rt. The case where independent HW processes are regressed on each

other is covered in the next proposition For simplicity, we restrict the presentation to the

case of a simple regression.

Proposition 4. Assume two independent processes, yk,t = h(L)xk,t, k = 1, 2, with

autocorrelations ρk(h) and variances γk(0), where {xk,t} are from Assumption 1, and

{εk,t} from Assumption 1 are strictly stationary, ergodic martingale di�erence sequences.

Consider the OLS regression

y1,t = α̂ + β̂y2,t + êt , t = 1, . . . , T ,

with the usual t statistic tβ=0 testing for β = 0. It then holds that

√
T β̂

D→ N

(
0,
γ1(0)

γ2(0)

∞∑
h=−∞

ρ1(h)ρ2(h)

)
and tβ=0

D→ N

(
0, 1 + 2

∞∑
h=1

ρ1(h)ρ2(h)

)

as T →∞.

Proof. See Appendix.

Regardless of the long memory in both processes, no spurious regression arises under

independence. First, β̂ from Proposition 4 converges to the true value at the standard

rate. Second, the t statistic does not diverge, although its limiting normal distribution

has of course a variance di�erent from one due to the serial correlation in the residuals.

Remark 4 As an example, consider two independent harmonically weighted noise series,

yk,t = h(L)εk,t where by Remark 1 ρk(h) = 6
π2

1
h

∑h
j=1

1
j
. We hence have

2
∞∑
h=1

ρ1(h)ρ2(h) = 2
∞∑
h=1

(ρ1(h))2 =
17

5
,

where the latter equality is from Borwein and Borwein (1995, eq. (3)). If one erroneously

compares tβ=0 with quantiles from the standard normal distribution, then the probability

to reject for a two-sided 5% level test becomes asymptotically

lim
T→∞

Pr (|tβ=0| > z0.975) = 2 Φ

(
−
√

5√
22

1.96

)
≈ 0.35 ,
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where Proposition 4 was used with the standard normal distribution function Φ(·).

In the previous section we learnt that the sample means of HW as well as FI processes

display nonstandard rates of convergence, however the rate is slower for FI due to the

stronger long memory. We close the present section with a comparison of respective

regression results. When it comes to regressions of FI processes, it is crucial that the

order of integration of the left-hand side equals the maximum order on the right-hand

side; otherwise the equation is unbalanced, and the regressors cannot possibly explain the

regressand. But even in the case of balanced regressions, FI may cause troubles. Consider

in analogy to Proposition 4 that two independent, stationary FI processes are regressed

on each other, where the order of integration is between 1/4 and 1/2. Then spurious

regressions arise in that tβ=0 diverges in absolute value with increasing sample size, see

Tsay and Chung (2000). Such pitfalls cannot happen with HW processes.

5 Harmonic Inverse Transformation

Next, we turn to the transformation of the data that removes the pole in the spectrum

observed from Prop. 1 a). Thus the harmonic �lter h(L) is inverted to de�ne

g(L) =
1

h(L)
= − L

ln(1− L)
= 1−

∞∑
j=1

gjL
j , (13)

where {gj} are the coe�cients of the Taylor expansion, and h(L)g(L) = 1 yields the

recursive relation

gj =
1

j + 1
−

j−1∑
i=1

gi
j − i+ 1

, j ≥ 1 , g0 = 1 .

These coe�cients are sometimes called Gregory coe�cients, see e.g. Blagouchine (2016),

and they are known to be positive, gj > 0. An evaluation yields for the �rst terms of the

sequence

g0 = 1 , g1 =
1

2
, g2 =

1

12
, g3 =

1

24
, g4 =

19

720
, g5 =

3

160
.

It is obvious that

g(1) = lim
z→1

g(z) = 0 ,

see also Blagouchine (2016, eq. (20)). Hence, we have that
∑∞

j=1 gj = 1, such that the

�lter g(L) is (absolutely) summable, and one even knows the rate at which the coe�cients

vanish, see Blagouchine (2016, eq. (18)):

gj ∼
1

j ln2 j
as j →∞ . (14)
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Since the �lter coe�cients sum up to zero, it follows for HW processes from Assumption

1 that

g(L)yt = g(1)µ+ xt = xt .

Hence, �ltering the data not only removes the long memory but the mean at the same time,

which is convenient, since we saw in Section 3 that the mean is hard to estimate. Similarly,

we may allow for mean shifts that are removed by harmonic inverse transformation (HIT).

In the simplest case, let one break occur at time bτT c (0 < τ < 1):

mt =

{
µ0 , t ≤ bτT c
µ1 , t > bτT c

.

Here, the removal is not exact for t > τT . We rather have that

g(L)mt =


g(1)µ0 = 0 , if t ≤ bτT c(

1−
t−bτT c−1∑

j=1

gj

)
µ1 − µ0

∞∑
j=t−bτT c

gj , if t > bτT c
.

For some �xed ε > 0 and t = bτT c + bεT c, the term
∑∞

j=t−bτT c gj converges to zero as

T →∞, such that

lim
T→∞

g(L)mbτT c+bεT c = g(1)µ1 − µ0 0 = 0 .

In practice, given only a �nite past, the HIT has to be truncated:

g+(L)yt := g(L)yt1(t>0)(t) =
t−1∑
j=0

gjyt−j , t = 1, . . . , T . (15)

Now, we are ready to study the dynamic properties of U.S. in�ation data.

6 U.S. In�ation

Let Pt stand for the seasonally adjusted monthly consumer price index from December

1969 until August 2017.1 The in�ation series is computed as πt = 100 (Pt − Pt−1)/Pt−1,
t = 1, . . . , T = 572, see the northwestern graph in Figure 2. The sample autocorrelogram

in the northeastern graph is indicative of long memory with ρ̂π(h) > 0.3 for 1 ≤ h ≤ 20.

At the same time, ρ̂π(1) is clearly less than 1, so that we can rule out a unit root (d = 1).

The estimated integration parameter is very close to the region of stationarity, d̂ = 0.52,

when estimated by exact local Whittle [ELW] according to Shimotsu and Phillips (2005)

1Consumer Price Index for All Urban Consumers (all items), retrieved from FRED, Federal Reserve
Bank of St. Louis, October 04, 2017.
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Figure 2: U.S. in�ation

and Shimotsu (2010) with bandwidth T 0.60. This value was used to fractionally di�erence

the series, and alternatively we use the harmonic inverse transformation, HIT:

dift = (1− L)d̂πt and hitt = g(L)πt.

Next, the sample autocorrelations of dift and hitt are computed; they are plotted in the

lower graphs of Figure 2 (right and left, respectively). The resulting sample autocorrel-

ograms appear very similar by visual inspection. This suggests that the harmonically

weighted model captures the long-range dependence of U.S. in�ation just as well as frac-

tional integration. To support this claim we compute the Box-Pierce statistics,

Qdif (25) = T

25∑
h=1

(ρ̂dif (h))2 = 72.81 and Qhit(25) = T

25∑
h=1

(ρ̂hit(h))2 = 70.11 .

Clearly, these values are signi�cantly di�erent from zero at any reasonable level: We

do not claim that fractional di�erencing or harmonic inverse transformation turn U.S.

in�ation into white noise. But the di�erence between Qdif and Qhit is small, supporting

our claim that the model of harmonic weighting does as good a job in capturing the

in�ation persistence as the more popular model of fractional integration. At the same

time, the HW is radically more simple, it does not require to choose an estimator d̂, and

it does not require to pick a bandwidth m.
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Figure 3: Spectra at harmonic frequencies λj = 2πj/T , j = 1, . . . , T/2− 1

Of course, we do not know whether the true DGP behind U.S. in�ation is fractional

integration. Therefore, the next section turns to a more systematic comparison between

this traditional long memory model and the model of harmonic weighting.

7 HWP versus FI

Although we observed in (7) that the persistence and memory of FI and HW processes have

di�erent qualities in theory, matters may be di�erent in �nite samples. Given a sample size

T , one typically estimates spectra at harmonic frequencies λj = 2πj/T , j = 1, . . . , T/2−1.

For that reason, we plot in Figure 3 HWP spectra and fractionally integrated spectra (for

d = 0.3 and d = 0.4) for di�erent T (with σ2 = 2π). For d = 0.3, the HWP spectrum

turns out to be higher than the I(0.3) spectrum at λj close to the origin; for d = 0.4, the

spectra of the I(d) and HW processes are even closer and hard to distinguish by eyesight,

and this will of course be all the more true when spectra are estimated in practice. We

take this as preliminary evidence that the HWP may be an adequate way to capture

memory in data that is otherwise modelled by fractional integration.

To gain further insights into the relation between FI and HWP, we conducted a Monte

Carlo experiment with 10,000 replications. We simulated fractionally integrated noise (of

17



type II according to Jensen and Nielsen (2014)), zt = ∆−d+ εt ∼ I(d), where εt is standard

normal. Then we HIT the data, hitt = g+(L)zt, and estimate the order of integration of the

�ltered sequence hitt by means of the ELW estimator mentioned previously. Theoretically,

the order of integration should not be a�ected by HITing, i.e. hitt ∼ I(d). In other words:

d̂ computed from hitt should vary around d. In �nite samples, however, things are quite

di�erent. In Figure 4 we present Box plots of ELW estimates d̂ computed as described in

the previous section. For T = 100, the median of d̂ is roughly d− 0.4; still for T = 1000

the di�erence between the median of d̂ and d is roughly 0.3. For d = 0.3 and d = 0.4 the

zero line falls almost always between the lower and upper quartile of d̂ for all T , meaning

the majority of these cases resembles upon HITing I(0) rather than I(d).

We complement the experiment by testing the null hypothesis that the data upon har-

monic inverse transformation, hitt = g+(L)zt, is I(0). Theoretically, this null is wrong,

because zt ∼ I(d). Still, we want to see how well a test discriminates at a 5% level. To

that end we compute the (lag-)augmented LM [ALM] test by Demetrescu, Kuzin, and

Hassler (2008). The test is executed by regressing the �ltered data hitt on the auxiliary

regressor r∗t−1 and q endogenous lags, hitt−j, j = 1, . . . , q, where

r∗t−1 =
t−1∑
j=1

hitt−j
j

.

The absolute value of the t statistic testing for insigni�cance of r∗t−1 is compared with the

standard normal. Following the recommendation by Demetrescu et al. (2008), we choose

q = b4(T/100)1/4c. In Figure 5 we report rejection frequencies for d ∈ {0, 0.1, . . . , 0.6}
and T ∈ {100, 200, . . . , 1000}. For small samples, T = 100, the null of I(0) is not

rejected more often than in 5% of the cases when d ∈ [0.2, 0.4]. Even with T = 1000

and d = 0.3, the rejection frequency is only 10%, and only with T = 1000 and d = 0 or

d = 0.6 we get somewhere close to 100% rejection. This points again at, loosely speaking,

near-observational equivalence of harmonic weighting and fractional integration in �nite

samples over a wide range of combinations of d and T , meaning: If we HIT I(d) processes,

the persistence is e�ectively removed in �nite samples for many combinations of d and T .

There is yet another aspect to Figure 5. Note that the highest frequency of rejection

occurs for d = 0 for all values of T . This means that the ALM test, which is designed

against fractional alternatives, has considerable power to detect long memory even if it is

caused by harmonic weighting and not by fractional integration.
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Figure 4: ELW estimates from hitt = g+(L)zt, zt ∼ I(d)
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8 Concluding Remarks

The standard model to account for long memory in �nance and economics is fractional

integration of order d, where this memory parameter may take on any positive value.

Fractional integration thus o�ers an overwhelming �exibility in modelling persistence.

This is a virtue and a burden at the same time: on the one hand, there is a high degree

of �exibility in modelling long memory, but on the other hand the estimation of d is

notoriously di�cult and troubled by large variance of slowly converging semiparametric

estimators. Here, we suggest an alternative model for long memory, which amounts to

harmonically weighting short memory processes. With monthly U.S. in�ation data we

illustrate that this model may well be able to capture dynamics that have been modelled

by fractional integration in the past. A large Monte Carlo experiment indeed shows

that harmonic weighting may e�ectively capture the long memory usually modelled by

fractional integration for a relevant range of d.

We also study the asymptotic least squares theory when harmonically weighted processes

are regressed on each other. While limiting normality of the sample average requires the

nonstandard normalization with
√
T/ lnT , the regression estimators converge to Gaussian

limits upon the standard normalization with
√
T allowing for standard inference. Com-

puter experiments support the �nite sample relevance of this limiting distribution theory.

Consequently, the empirical economists may allow long memory series to enter their sta-

tionary regressions without having to worry about nonstandard inference � as long as the

long memory may be considered as being caused or captured by harmonic weighting. The

admitted simplicity and rigidity of the harmonically weighted model, which does not allow

- or require - to choose a memory parameter, may therefore turn out to be a practical

advantage in applied work.

There are open issues. First, one may wish to step beyond the single equation regression

and allow for a truely multivariate framework where harmonically weighted vector au-

toregressive processes are allowed for. Second, one may account for nonstationarity and

allow for processes where integer di�erencing is required to obtain harmonically weighted

processes. Third, the harmonically weighted model may serve as a general forecasting

device under long memory when the true data generating process is not known and might

be fractionally integrated or spurious long memory. These issues are currently under

investigation but beyond the scope of the present paper.
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Appendix

Preliminary Results

Our proofs of Proposition 1 and 2 rely on what is sometimes called the Stolz-Cesàro

Theorem. For the ease of reference, we give the result here, adopting the version by

Mure³an (2009, Thm. 1.22).

Stolz-Cesàro Theorem Let {sn} and {σn} be real sequences, n ∈ N, where {σn}
is strictly monotone and divergent. If (sn+1−sn)/(σn+1−σn) converges, then sn+1/σn+1

converges, too, and has the same limit:

If lim
n→∞

sn+1 − sn
σn+1 − σn

= ` , then lim
n→∞

sn+1

σn+1

= ` . (16)

The proof by Mure³an (2009) also covers the case ` = ±∞. For a historical exposition on

this result we also recommend Knopp (1951, pp. 76, 77).

The proof of Proposition 2 requires a technical lemma that we provide next.

Lemma A. It holds that

T∑
h=1

(T − h) lnh

h
=
T

2
ln2 T − T lnT +O(T ) .

Proof. We de�ne the function f (x) = (T−x) lnx
x

with kth derivative f (k). In order to

evaluate
∑T

h=1 f(h), we use Euler's summation formula taken from Knopp (1951, p. 524):

T∑
h=1

f(h) =

∫ T

1

f(x) dx+
1

2
(f(T ) + f(1)) +

1

12

(
f (1)(T )− f (1)(1)

)
+R , (17)

where

|R| ≤ 1

2π3

∫ T

1

∣∣f (3) (x)
∣∣ dx .

For the third derivative we obtain in absolute value that

∣∣f (3) (x)
∣∣ =

∣∣∣∣11T

x4
− 6T lnx

x4
− 2

x3

∣∣∣∣ ≤ 11T

x4
+

6T lnx

x4
+

2

x3
.

It is elementary to verify that∫ T

1

f(x) dx =
1

2
T ln2 T − T lnT + T − 1 ,
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f(1) = f(T ) = 0, f (1)(T )− f (1)(1) = − lnT/T − (T − 1), and that

|R| ≤ 1

2π3
(O(T ) +O(T ) +O(1)) = O(T ) .

Hence,
T∑
h=1

f(h) =
1

2
T ln2 T − T lnT +O(T ) ,

which proves the result. �

Proof of Proposition 1

The stationarity and the expectation follow from Fuller (1996, Thm. 2.2.3) since bj =∑j
k=0 ck/(j + 1 − k) is given by convolution of an absolutely summable and a square

summable �lter.

a) Let us decompose jbj = j
∑

k≤j/2 ck/(j + 1− k) + j
∑

k>j/2 ck/(j + 1− k). We consider

the second sum �rst:

j

∣∣∣∣∣∣
∑
k>j/2

ck
j + 1− k

∣∣∣∣∣∣ ≤
∑
k>j/2

2 k
|ck|

j + 1− k
≤
∑
k>j/2

2 k |ck| → 0 .

Second, we study the di�erence of the �rst sum and
∑

k≤j/2 ck:∣∣∣∣∣∣
∑
k≤j/2

ck − j
∑
k≤j/2

ck
j + 1− k

∣∣∣∣∣∣ ≤
∑
k≤j/2

|ck|
|1− k|
j + 1− k

=
|c0|
j + 1

+

j/2∑
k=2

|ck|
k − 1

j + 1− k

≤ 1

j + 1
+

j/2∑
k=2

|ck|
k

j + 1− j/2
→ 0 .

Consequently, j
∑

k≤j/2 ck/(j + 1− k)→
∑∞

k=0 ck for j →∞, as required.

b) For λ > 0 we have

fy(λ) =
∣∣h(eiλ)

∣∣2 fx(λ) , h(eiλ) = − ln(1− eiλ)
eiλ

,

where
∣∣h(eiλ)

∣∣2 = ln(1− eiλ)ln(1− e−iλ). Note that

ln(1− eiλ) = ln(r(λ) eiθ(λ)) = ln(r(λ)) + iθ(λ)

with

r(λ) =
√

(1− cosλ)2 + sin2 λ =

√
4 sin2 λ

2
,
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and

θ(λ) = arctan
− sinλ

1− cosλ
, λ > 0 .

With ln(1− e−iλ) = ln(r(λ))− iθ(λ) we obtain

∣∣h(eiλ)
∣∣2 = ln2(r(λ)) + θ2(λ) = ln2

(
2 sin

λ

2

)
+ arctan2 sinλ

1− cosλ
.

Further, focusing on the principal value,

arctan
sinλ

1− cosλ
= arctan cot

λ

2
=
π

2
− λ

2
,

where we used the usual double-angle formulae and tan(π/2− x) = cot x for the last two

equations, respectively. Hence, we have at the origin that∣∣h(eiλ)
∣∣2

ln2 λ
→ 1 as λ→ 0 .

This implies the spectral results as required.

c) We write bj as

bj =
1

j + 1

j∑
k=0

ck

1− k
j+1

=
1

j + 1
Bj ,

where Bj was de�ned implicitly. From part a) we have that Bj → c(1). Now, de�ne

sj − sj−1 = bjbj+h and σj − σj−1 = 1
j+1

1
j+h+1

. It holds by part a) that (sj − sj−1)/(σj −
σj−1) = BjBj+h → (c(1))2. Therefore, by (16) we have∑∞

j=0 bjbj+h∑∞
j=0

1
j+1

1
j+h+1

=
γy(h)/σ2

1
h

∑h
j=1

1
j

= (c(1))2 ,

where the �rst equality is by (6). This means that

γy(h) ∼ 2πfx (0)
lnh

h
.

Hence, the proof is complete.

Proof of Proposition 2

a) De�ne sT−1 =
∑T−1

h=1 (T − h) γy (h) and σT−1 =
∑T−1

h=1 (T − h) lnh
h

with

sT−1 − sT−2
σT−1 − σT−2

=

∑T−1
h=1 γy (h)∑T−1
h=1

lnh
h

.
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By Proposition 1 c), we have γy (T − 1) ∼ 2πfx (0) ln(T−1)
T−1 . Using (16) it hence follows

that
sT−1 − sT−2
σT−1 − σT−2

=

∑T−1
h=1 γy (h)∑T−1
h=1

lnh
h

→ 2πfx (0) .

Again by (16), this time applied to sT−1 and σT−1, we conclude that∑T−1
h=1 (T − h) γy (h)∑T−1
h=1 (T − h) lnh

h

→ 2πfx (0) .

We may expand the left-hand side,∑T−1
h=1 (T − h) γy (h)∑T−1
h=1 (T − h) lnh

h

=

∑T−1
h=1 (T − h) γy (h)

1
2
T ln2 T

1
2
T ln2 T∑T−1

h=1 (T − h) lnh
h

,

where the second factor on the right-hand side converges to 1 by Lemma A, such that∑T−1
h=1 (T − h) γy (h)

1
2
T ln2 T

→ 2πfx (0) .

Consequently,

V ar
(∑T

t=1 yt

)
T ln2 T

=
γy (0)

ln2 T
+

2
∑T−1

h=1 (T − h) γy (h)

T ln2 T
→ 2πfx (0) ,

as required.

b) De�ne ST (r) =
∑brT c

t=1 (yt − µ) and σ2
T = Var (ST (1)). Then we �rst establish the

convergence of the �nite dimensional distributions of σ−1T ST (r) for 0 ≤ r ≤ 1. To do so

we �rst observe that

Var
(∑bτT c

t=1 (yt − µ)
)

Var
(∑T

t=1 (yt − µ)
) =

τT ln2 (τT ) (1 + o (1))

T ln2 (T ) (1 + o (1))
→ τ .

For brevity de�ne at−1 =
∑t−1

m=0 bm. With Sj =
∑j

t=1 yt =
∑j

t=1 at−1εt we easily see for

j ≥ k that Cov (Sj, Sk) = Var (Sk), since

Var (Sj − Sk) = Var

(
j∑

t=k+1

at−1εt

)
= σ2

ε

j∑
t=k+1

a2t−1 = σ2
ε

j∑
t=1

a2t−1 − σ2
ε

k∑
t=1

a2t−1.

Therefore, using Abadir et al. (2014, Thm. 2.1), we may conclude that

ST (r)

σT

fdd→ W (τ) ,
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where
fdd→ denotes the �nite dimensional convergence of distributions. To complete the

proof we need to show that ST (r)
σT

is tight with respect to the uniform metric, where we

require E (|εt|p) <∞ for some p > 2. Note that with some positive constant c

E

∣∣∣∣ST (r)

σT
− ST (s)

σT

∣∣∣∣p ≤ c

[
E

(
ST (r)

σT
− ST (s)

σT

)2
] p

2

= c

E

σ−1T brT c−bsT c∑
t=1

(yt − µ)

2
p
2

= c

[
(brT c − bsT c) ln2 (brT c − bsT c)

T ln2 (T )

1 + o (1)

1 + o (1)

] p
2

≤ c

∣∣∣∣brT cT − bsT c
T

∣∣∣∣ p2 ,
where the �rst inequality follows from Abadir et al. (2014, Lemma 3.1). By Billingsley

(1968, Thm. 15.5), the last inequality shows that ST (r)
σT

is tight with respect to the uniform

metric. Hence, the proof is complete.

Proof of Proposition 3

Under our standard assumptions the proof is straightforward. By Assumption 3 b), the

series {εt} and {rtεt} are both strictly stationary and ergodic mds with Var(εt) = σ2 and

Cov(rtεt) = Σrσ
2. By a mds CLT,

1√
T

T∑
t=1

xtεt
D→ N

(
0,Σxσ

2
)
.

By ergodicity,

1

T

T∑
t=1

xtx
′
t

p→ Σx ,

where the limit is invertible by Assumption 3 c). Hence, the limit of
√
T (β̂−β) is obvious.

Finally, with ε̂t = εt − (β̂ − β)′xt it holds that

T∑
t=1

ε̂2t =
T∑
t=1

ε2t +Op(1) ,

such that σ̂2 p→ σ2, as required to complete the proof.
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Proof of Proposition 4

We observe

√
T β̂ =

1√
T

∑T
t=1 y1,ty2,t −Op

(
ln2 T√
T

)
1
T

∑T
t=1(y2,t − y2)2

,

where the Op term follows from Proposition 2. De�ne the stationary sequence {wt},

wt = y1,ty2,t with E(wt) = 0 , γw(h) = E(wtwt+h) = γ1(h)γ2(h) ,

where γk(h) are the autocovariances of yk,t. By Proposition 1 a), the sequence {γw(h)}
dies out at rate ln2 h

h2
, and is hence summable. Thus we may de�ne

ω2
w =

∞∑
h=−∞

γw(h) <∞ .

By a CLT, see e.g. Abadir et al. (2014, Thm. 2.1), one has

1√
T

T∑
t=1

wt
D→ N (0, ω2

w) .

By ergodicity, the limiting distribution of
√
T β̂ is implied. The rest of the proof is

straightforward.
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